[1] 孙浩, 陈春林, 刘琼, 等. 基于深度强化学习的交通信号控制方法[J]. 计算机科学,2020,47(2):169-174.(SUN H,CHEN C L,LIU Q,et al. Traffic signal control method based on deep reinforcement learning[J]. Computer Science,2020,47(2):169-174.) [2] JOVANOVIĆ A,NIKOLIĆ M,TEODOROVIĆ D. Area-wide urban traffic control:a Bee Colony Optimization approach[J]. Transportation Research Part C:Emerging Technologies,2017, 77:329-350. [3] 李冰, 成卫, 晏永廷, 等. 基于MP与MPC相结合的分布式交通信号控制研究[J]. 交通运输系统工程与信息,2019,19(5):86-93.(LI B,CHENG W,YAN Y T,et al. Distributed traffic signal control based on combination of MP and MPC[J]. Journal of Transportation Systems Engineering and Information Technology, 2019,19(5):86-93.) [4] WONGPIROMSARN T,UTHAICHAROENPONG T,WANG Y,et al. Distributed traffic signal control for maximum network throughput[C]//Proceeding of the 15th International IEEE Conference on Intelligent Transportation Systems. Piscataway:IEEE,2012:588-595. [5] LIASKOS C,DIMITROPOULOS X,TASSIULAS L. Backpressure on the backbone:a lightweight,non-intrusive traffic engineering approach[J]. IEEE Transactions on Network and Service Management,2017,14(1):176-190. [6] YEN C C,GHOSAL D,ZHANG M,et al. Falsified data attack on backpressure-based traffic signal control algorithms[C]//Proceeding of the 2018 IEEE Vehicular Networking Conference. Piscataway:IEEE,2018:1-8. [7] XIAO N,FRAZZOLI E,LI Y,et al. Pressure releasing policy in traffic signal control with finite queue capacities[C]//Proceeding of the 53rd IEEE Conference on Decision and Control. Piscataway:IEEE,2014:6492-6497. [8] 陈伟清, 张学垚, 赵文超, 等. 基于粗糙集与变异系数法相结合的智慧交通评价体系研究[J]. 数学的实践与认识,2019,49(2):191-197.(CHEN W Q,ZHANG X Y,ZHAO W C,et al. A study on the intelligent traffic evaluation system based on the combination of rough set and coefficient of variation[J]. Mathematics in Practice and Theory,2019,49(2):191-197.) [9] XIE X,GU X. Research on data mining model of intelligent transportation based on granular computing[J]. International Journal of Security and its Applications,2016,10(7):281-286. [10] ABDEL-BASSET M,MOHAMED M. The role of single valued neutrosophic sets and rough sets in smart city:imperfect and incomplete information systems[J]. Measurement,2018,124:47-55. [11] HAO S,YANG L. Traffic network modeling and extended maxpressure traffic control strategy based on granular computing theory[J]. Mathematical Problems in Engineering, 2019, 2019:No. 2752763. [12] YAN X,XU J,MA Y. Bi-level optimization model of boundary signal control for the network based on macroscopic fundamental diagrams[J]. International Journal of Intelligent Transportation Systems Research,2020,18(1):113-121. [13] 王力, 李敏, 何忠贺, 等. 基于宏观基本图的路网多子区状态一致协同控制[J]. 交通运输系统工程与信息,2019,19(3):81-87,102.(WANG L,LI M,HE Z H,et al. Multi-region state consistent collaborative control based on MFD in traffic network[J]. Journal of Transportation Systems Engineering and Information Technology,2019,19(3):81-87,102.) [14] 刘澜, 李新. 基于MFD的路网可扩展边界控制策略[J]. 公路交通科技,2018,35(9):85-91.(LIU L,LI X. Scalable perimeter control strategy of road network based on MFD[J]. Journal of Highway and Transportation Research and Development,2018,35(9):85-91.) [15] GEROLIMINIS N,DAGANZO C F. Existence of urban-scale macroscopic fundamental diagrams:some experimental findings[J]. Transportation Research Part B:Methodological,2008,42(9):759-770. [16] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences,1982,11(5):341-356. [17] SHI K. Two direction S-rough sets[J]. Journal of Fuzzy Mathematics,2005,13(2):335-351. [18] DAGANZO C F. Urban gridlock:macroscopic modeling and mitigation approaches[J]. Transportation Research Part B:Methodological,2007,41(1):49-62. [19] 徐建闽, 鄢小文, 荆彬彬, 等. 考虑交叉口不同饱和度的路网动态分区方法[J]. 交通运输系统工程与信息,2017,17(4):145-152.(XU J M,YAN X W,JING B B,et al. Dynamic network partitioning method based on intersections with different degree of saturation[J]. Journal of Transportation Systems Engineering and Information Technology,2017,17(4):145-152.) |