[1] DAY C P. Robotics in industry-their role in intelligent manufacturing[J]. Engineering,2018,4(4):440-445. [2] 沈阳航空航天大学. 一种基于全局视觉的下棋机器人及其控制方法:中国,202010052771.0[P]. 2020-05-12. (Shenyang Aerospace University. Chess playing robot based on global vision and control method:China,202010052771.0[P]. 2020-05-12.) [3] DANNER C, KAFAFY M. Visual chess recognition[R]. Stanford:Stanford University,2015. [4] GUI W,JUN T. Chinese chess recognition algorithm based oncomputer vision[C]//Proceedings of the 201426th Chinese Control and Decision Conference. Piscataway:IEEE,2014:3375-3379. [5] 杜俊俐, 张景飞, 黄心汉. 基于视觉的象棋棋盘识别[J]. 计算机工程与应用, 2007, 43(34):220-222, 232.(DU J L,ZHANG J F, HUANG X H. Chess-board recognition based on vision[J]. Computer Engineering and Applications,2007,43(34):220-222,232.) [6] 翟乃强. 改进的中国象棋棋盘识别方法[J]. 计算机应用, 2010, 30(4):980-981. (ZHAI N Q. Improved Chinese chessboard recognition method[J]. Journal of Computer Applications,2010, 30(4):980-981.) [7] 郭晓峰, 王耀南, 周显恩, 等. 中国象棋机器人棋子定位与识别方法[J]. 智能系统学报, 2018, 13(4):517-523.(GUO X F,WANG Y N,ZHOU X E,et al. Chess-piece localization and recognition method for Chinese chess robot[J]. CAAI Transactions on Intelligent Systems,2018,13(4):517-523.) [8] YU Y. Chinese chess state recognition[R]. Stanford:Stanford University,2015. [9] 党宏社, 张超, 庞毅, 等. 基于ORB算法的象棋快速识别和定位系统研究[J]. 科学技术与工程, 2017, 17(7):52-57.(DANG H S,ZHANG C,PANG Y,et al. Research of fast recognition and positioning system of chess based on ORB algorithm[J]. Science Technology and Engineering,2017,17(7):52-57.) [10] 张志伟, 孔凡让, 赵吉文, 等. 对弈机器人的视觉图像处理和识别[J]. 计算机应用与软件, 2008, 25(2):215-217.(ZHANG Z W, KONG F R, ZHAO J W, et al. Image processing and recognition in the vision of Chinese chess playing robot[J]. Computer Applications and Software,2008,25(2):215-217.) [11] 韩燮, 赵融, 孙福盛. 基于卷积神经网络的棋子定位和识别方法[J]. 激光与光电子学进展, 2019, 56(8):081007-1-081007-8. (HAN X, ZHAO R, SUN F S. Methods for location and recognition of chess pieces based on convolutional neuralnetwork[J]. Laser and Optoelectronics Progress,2019,56(8):081007-1-081007-8.) [12] YOSHIDA K. Challenge:concept of system life and its application to robotics[J]. Robotics and Autonomous Systems,2010,58(7):833-839. [13] DEY N. Uneven illumination correction of digital images:a survey of the state-of-the-art[J]. Optik,2019,183:483-495. [14] LEE S, LEE C. Multiscale morphology based illumination normalization with enhanced local textures for face recognition[J]. Expert Systems with Applications,2016,62:347-357. [15] ZHU J,ZHENG W,LU F,et al. Illumination invariant single face image recognition under heterogeneous lighting condition[J]. Pattern Recognition,2017,66:313-327. [16] CHEN M,TANG C,XU M,et al. Binarization of optical fringe patterns with intensity inhomogeneities based on modified FCM algorithm[J]. Optics and Lasers in Engineering,2019,123:14-19. [17] DE LA ESCALERA A,ARMINGOL J M. Automatic chessboard detection for intrinsic and extrinsic camera parameter calibration[J]. Sensors,2010,10(3):2027-2044. [18] BENNETT S,LASENBY J. ChESS-quick and robust detection of chess-board features[J]. Computer Vision and Image Understanding,2014,118:197-210. [19] BENNETT S,LASENBY J. Robust recognition of chess-boards under deformation[C]//Proceedings of the 2013 IEEE International Conference on Image Processing. Piscataway:IEEE, 2013:2650-2654. [20] LIU Y,LIU S,CAO Y,et al. A practical algorithm for automatic chessboard corner detection[C]//Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway:IEEE, 2014:3449-3453. [21] DAO V N,SUGIMOTO M. A robust recognition technique for dense checkerboard patterns[C]//Proceedings of the 201020th International Conference on Pattern Recognition. Piscataway:IEEE,2010:3081-3084. |