[1] ANDONI A, INDYK P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[C]//Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science. Piscataway:IEEE,2006:459-468. [2] KULIS B,GRAUMAN K. Kernelized locality-sensitive hashing for scalable image search[C]//Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway:IEEE, 2009:2130-2137. [3] 严双咏, 刘长红, 江爱文, 等. 语义耦合相关的判别式跨模态哈希学习算法[J]. 计算机学报,2019,42(1):164-175.(YAN S Y, LIU C H,JIANG A W,et al. Discriminative cross-modal hashing with coupled semantic correlation[J]. Chinese Journal of Computers,2019,42(1):164-175.) [4] 董震, 裴明涛. 基于异构哈希网络的跨模态人脸检索方法[J]. 计算机学报,2019,42(1):73-84.(DONG Z,PEI M T. Crossmodality face retrieval based on heterogeneous hashing network[J]. Chinese Journal of Computers,2019,42(1):73-84.) [5] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110. [6] KUMAR S,UDUPA R. Learning hash functions for cross-view similarity search[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press, 2011:1360-1365. [7] ZHANG D Q,LI W J. Large-scale supervised multimodal hashing with semantic correlation maximization[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2014:2177-2183. [8] BRONSTEIN M M,BRONSTEIN A M,MICHEL F,et al. Data fusion through cross-modality metric learning using similaritysensitive hashing[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2010:3594-3601. [9] LIN Z J,DING G G,HU M Q,et al. Semantics-preserving hashing for cross-view retrieval[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3864-3872. [10] SUN Y,CHEN Y H,WANG X G,et al. Deep learning face representation by joint identification-verification[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:1988-1996. [11] YAO T,LONG F C,MEI T,et al. Deep semantic-preserving and ranking-based hashing for image retrieval[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:3931-3937. [12] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [13] JIANG Q Y,LI W J. Deep cross-modal hashing[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:3270-3278. [14] LI C,DENG C,LI N,et al. Self-supervised adversarial hashing networks for cross-modal retrieval[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4242-4251. [15] YANG E K,DENG C,LIU W,et al. Pairwise relationship guided deep hashing for cross-modal retrieval[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2017:1618-1625. [16] DENG C,CHEN Z J,LIU X L,et al. Triplet-based deep hashing network for cross-modal retrieval[J]. IEEE Transactions on Image Processing,2018,27(8):3893-3903. [17] LIU X W,YU G X,DOMENICONI C,et al. Ranking-based deep cross-modal hashing[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2019:4400-4407. [18] 邓一姣, 张凤荔, 陈学勤, 等. 面向跨模态检索的协同注意力网络模型[J]. 计算机科学,2020,47(4):54-59.(DENG Y J, ZHANG F L,CHEN X Q,et al. Collaborative attention network modal for cross-modal retrieval[J]. Computer Science,2020,47(4):54-59.) [19] WU G S,LIN Z J,HAN J G,et al. Unsupervised deep hashing via binary latent factor models for large-scale cross-modal retrieval[C]//Proceedings of the 27th International Joint Conferences on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:2854-2860. [20] ZHANG J,PENG Y X,YUAN M K. Unsupervised generative adversarial cross-modal hashing[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:539-546. [21] WANG T,ZHU L,CHENG Z Y,et al. Unsupervised deep crossmodal hashing with virtual label regression[J]. Neurocomputing, 2020,386:84-96. [22] SU S P, ZHONG Z S, ZHANG C. Deep joint-semantics reconstructing hashing for large-scale unsupervised cross-modal retrieval[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:3027-3035. [23] SONG J K,YANG Y,YANG Y,et al. Inter-media hashing for large-scale retrieval from heterogeneous data sources[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York:ACM,2013:785-796. [24] DING G G,GUO Y C,ZHOU J L. Collective matrix factorization hashing for multimodal data[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:2083-2090. [25] LONG M S,CAO Y,WANG J M,et al. Composite correlation quantization for efficient multimodal retrieval[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2016:579-588. [26] ZHOU J L,DING G G,GUO Y C. Latent semantic sparse hashing for cross-modal similarity search[C]//Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2014:415-424. [27] HU H T,XIE L X,HONG R C,et al. Creating something from nothing:unsupervised knowledge distillation for cross-modal hashing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:3120-3129. [28] LI C, DENG C, WANG L, et al. Coupled cycleGAN:unsupervised hashing network for cross-modal retrieval[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:176-183. [29] HINTON G,VINYALS O,DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09)[2020-11-10]. https://arxiv.org/pdf/1503.02531.pdf. [30] FURLANELLO T,LIPTON Z C,TSCHANNEN M,et al. Born again neural networks[C]//Proceedings of the 35th International Conference on Machine Learning. New York:JMLR. org,2018:1607-1616. [31] YANG C L,XIE L X,QIAO S Y,et al. Training deep neural networks in generations:a more tolerant teacher educates better students[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:5628-5635. [32] CHEN Y T,WANG N Y,ZHANG Z X. DarkRank:accelerating deep metric learning via cross sample similarities transfer[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:2852-2859. [33] HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:770-778. [34] CHATFIELD K,SIMONYAN K,VEDALDI A,et al. Return of the devil in the details:delving deep into convolutional nets[C]//Proceedings of the 2014 British Machine Vision Conference. Durham:BMVA Press,2014:No. 054. [35] JIANG Q Y,LI W J. Asymmetric deep supervised hashing[C]//Proceedings of the 32nd AAAI conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:3342-3349. [36] SHEN F M,SHEN C H,LIU W,et al. Supervised discrete hashing[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:37-45. [37] KANG W C,LI W J,ZHOU Z H. Column sampling based discrete supervised hashing[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2016:1230-1236. [38] HUISKES M J,LEW M S. The MIR Flickr retrieval evaluation[C]//Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval. New York:ACM, 2008:39-43. [39] CHUA T S,TANG J H,HONG R C,et al. NUS-WIDE:a realworld Web image database from National University of Singapore[C]//Proceedings of the 2009 ACM International Conference on Image and Video Retrieval. New York:ACM,2009:No. 48. |