[1] 陈益民, 周垂一. 中国水利水电地下工程数据统计(截至2016年底)[J]. 隧道建设,2017,37(6):778-779.(CHEN Y M,ZHOU C Y. China water conservancy and hydropower underground engineering data statistics (to the end of 2016)[J]. Tunnel Construction,2017,37(6):778-779.) [2] 刘志宽. 输水隧洞检测和安全评价[D]. 大连:大连理工大学, 2017:9-11.(LIU Z K. Detection and safety assessment of water conveyance tunnel[D]. Dalian:Dalian University of Technology, 2017:9-11.) [3] 姚学练, 贺福强, 平安, 等. 基于HSI颜色空间与灰度波动相结合的复杂桥梁蜂窝麻面的图像分割[J]. 计算机应用,2019,39(3):882-887. (YAO X L,HE F Q,PING A,et al. Image segmentation for complex voids and pits of bridge based on combination of HSI color space and gray fluctuation[J]. Journal of Computer Applications,2019,39(3):882-887.) [4] 王永会, 陈荣. 基于分数阶傅里叶变换和频谱增强的路面裂缝图像识别方法[J]. 计算机应用,2020,40(S1):189-194. (WANG Y H,CHEN R. Pavement crack image recognition method based on fractional Fourier transform and spectral enhancement[J]. Journal of Computer Applications,2020,40(S1):189-194.) [5] 张建云, 刘九夫, 金君良. 关于智慧水利的认识与思考[J]. 水利水运工程学报,2019(6):1-7.(ZHANG J Y,LIU J F,JIN J L. Understanding and thinking of smart water conservancy[J]. HydroScience and Engineering,2019(6):1-7.) [6] 王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报,2018,30(5):859-867. (WANG S, WU X, ZHANG Y H, et al. Image crack detection with fully convolutional network based on deep learning[J]. Journal of Computer-Aided Design and Computer Graphics, 2018,30(5):859-867.) [7] 陈波, 张华, 汪双, 等. 基于全卷积神经网络的坝面裂纹检测方法研究[J]. 水力发电学报,2020,39(7):52-60.(CHEN B, ZHANG H,WANG S,et al. Study on detection method of dam surface cracks based on full convolution neural network[J]. Journal of Hydroelectric Engineering,2020,39(7):52-60.) [8] 梁雪慧, 程云泽, 张瑞杰, 等. 基于卷积神经网络的桥梁裂缝识别和测量方法[J]. 计算机应用,2020,40(4):1056-1061. (LIANG X H,CHENG Y Z,ZHANG R J,et al. Bridge crack classification and measurement method based on deep convolutional neural network[J]. Journal of Computer Applications,2020,40(4):1056-1061.) [9] DUNG C V,ANH L D. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction,2019,99:52-58. [10] FENG C C,ZHANG H,WANG H R,et al. Automatic pixel-level crack detection on dam surface using deep convolutional network[J]. Sensors,2020,20(7):No. 2069. [11] HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:770-778. [12] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [13] GULRAJANI I,AHMED F,ARJOVSKY M,et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:5767-5779. [14] GUO C L,LI C Y,GUO J C,et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2020:1777-1786. [15] YANG B,BENDER G,LE Q V,et al. CondConv:conditionally parameterized convolutions for efficient inference[C]//Proceedings of the 2019 Annual Conference on Neural Information Processing Systems. La Jolla, CA:NIPS Foundation, 2019:1305-1316. [16] HINTON G,VINYALS O,DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09)[2020-06-10]. https://arxiv.org/pdf/1503.02531.pdf. [17] WANG H R,WANG S,FENG C C,et al. Diversion tunnel defects inspection and identification using an automated robotic system[C]//Proceedings of the 2019 Chinese Automation Congress. Piscataway:IEEE,2019:5863-5868. [18] 周志华. 机器学习[M]. 北京:清华大学出版社,2016:23-33. (ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press,2016:23-33.) [19] MOLCHANOV P, TYREE S, KARRAS T, et al. Pruning convolutional neural networks for resource efficient inference[EB/OL]. (2017-06-08)[2020-06-10]. https://arxiv.org/pdf/1611.06440.pdf. [20] ZHANG Y K,ZHANG J,WANG Q,et al. DyNet:dynamic convolution for accelerating convolutional neural networks[EB/OL]. (2020-04-22)[2020-06-10]. https://arxiv.org/pdf/2004.10694.pdf. [21] YUAN L, TAY F E, LI G L, et al. Revisiting knowledge distillation via label smoothing regularization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2020:3902-3910. [22] AHN S,HU S X,DAMIANOU A,et al. Variational information distillation for knowledge transfer[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:9155-9163. [23] CHATTOPADHYAY A,SARKAR A,HOWLADER P,et al. Grad-CAM++:generalized gradient-based visual explanations for deep convolutional networks[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE,2018:839-847. |