《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (8): 2501-2510.DOI: 10.11772/j.issn.1001-9081.2021060901
Jieqin WANG, Shihyang LIN(), Shiming PENG, Shuo JIA, Miaohui YANG
摘要:
针对车联网(IoV)中存在大量的车辆卸载任务计算需求,而本地端边缘服务器运算能力有限的问题,提出一种移动边缘计算分层协同资源配置机制(HRAM)。所提算法以多层式的架构合理分配与有效利用移动边缘计算(MEC)服务器的运算资源,减少不同MEC服务器之间的数据多跳转发时延,并优化卸载任务请求时延。首先构建IoV边缘计算系统模型、通信模型、决策模型和计算模型;然后利用层次分析法(AHP)进行多因素综合考虑以确定卸载任务迁移的目标服务器;最后提出动态权值的任务路由策略,调用整体网络的通信能力以缩短卸载任务的请求时延。仿真实验结果表明,HRAM算法相较于任务卸载单层式资源分配(RATAOS)算法和任务卸载多层式资源分配(RATOM)算法,分别降低了40.16%和19.01%的卸载任务请求时延;且所提算法在满足卸载任务最大可容忍时延的前提下,能够满足更多卸载任务的计算需求。
中图分类号: