《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (12): 3700-3707.DOI: 10.11772/j.issn.1001-9081.2021101779
所属专题: 人工智能
收稿日期:
2021-10-18
修回日期:
2021-12-29
接受日期:
2022-01-14
发布日期:
2022-01-24
出版日期:
2022-12-10
通讯作者:
于玉海
作者简介:
孟佳娜(1972—),女,吉林四平人,教授,博士,CCF会员,主要研究方向:机器学习、文本挖掘基金资助:
Jiana MENG1, Pin LYU1, Yuhai YU1(), Shichang SUN1, Hongfei LIN2
Received:
2021-10-18
Revised:
2021-12-29
Accepted:
2022-01-14
Online:
2022-01-24
Published:
2022-12-10
Contact:
Yuhai YU
About author:
MENG Jiana,born in 1972, Ph. D., professor. Her research interests include machine learning, text mining.Supported by:
摘要:
在跨领域情感分析任务中,目标领域带标签样本严重不足,并且不同领域间的特征分布差异较大,特征所表达的情感极性也有很大差别,这些问题都导致了分类准确率较低。针对以上问题,提出一种基于胶囊网络的方面级跨领域情感分析方法。首先,通过BERT预训练模型获取文本的特征表示;其次,针对细粒度的方面级情感特征,采用循环神经网络(RNN)将上下文特征与方面特征进行融合;然后,使用胶囊网络配合动态路由来区分重叠特征,并构建基于胶囊网络的情感分类模型;最后,利用目标领域的少量数据对模型进行微调来实现跨领域迁移学习。所提方法在中文数据集上的最优的F1值达到95.7%,英文数据集上的最优的F1值达到了91.8%,有效解决了训练样本不足造成的准确率低的问题。
中图分类号:
孟佳娜, 吕品, 于玉海, 孙世昶, 林鸿飞. 基于胶囊网络的方面级跨领域情感分析[J]. 计算机应用, 2022, 42(12): 3700-3707.
Jiana MENG, Pin LYU, Yuhai YU, Shichang SUN, Hongfei LIN. Aspect-level cross-domain sentiment analysis based on capsule network[J]. Journal of Computer Applications, 2022, 42(12): 3700-3707.
超参数 | 值 |
---|---|
Bert_size | 768 |
capsule_size | 300 |
句子长度 | 80 |
词向量维度 | 300 |
Batch_size | 32 |
Dropout比率 | 0.2 |
epoch | 5 |
微调数据比例(m) | 0、0.05、0.1、0.15、0.2 |
表1 实验参数设置
Tab.1 Experimental parameters setting
超参数 | 值 |
---|---|
Bert_size | 768 |
capsule_size | 300 |
句子长度 | 80 |
词向量维度 | 300 |
Batch_size | 32 |
Dropout比率 | 0.2 |
epoch | 5 |
微调数据比例(m) | 0、0.05、0.1、0.15、0.2 |
源域 → 目标域 | 准确率 | F1值 | ||
---|---|---|---|---|
句子级 | 方面级 | 句子级 | 方面级 | |
平均值 | 0.781 | 0.883 | 0.707 | 0.886 |
C→B | 0.725 | 0.869 | 0.870 | 0.875 |
C→H | 0.683 | 0.863 | 0.641 | 0.858 |
H→B | 0.780 | 0.840 | 0.785 | 0.864 |
H→C | 0.835 | 0.934 | 0.882 | 0.913 |
B→C | 0.848 | 0.932 | 0.854 | 0.945 |
B→H | 0.812 | 0.862 | 0.813 | 0.860 |
表2 中文语料上的不同粒度结果对比(m=0.1)
Tab.2 Comparison of different granularity results on Chinese corpus (m=0.1)
源域 → 目标域 | 准确率 | F1值 | ||
---|---|---|---|---|
句子级 | 方面级 | 句子级 | 方面级 | |
平均值 | 0.781 | 0.883 | 0.707 | 0.886 |
C→B | 0.725 | 0.869 | 0.870 | 0.875 |
C→H | 0.683 | 0.863 | 0.641 | 0.858 |
H→B | 0.780 | 0.840 | 0.785 | 0.864 |
H→C | 0.835 | 0.934 | 0.882 | 0.913 |
B→C | 0.848 | 0.932 | 0.854 | 0.945 |
B→H | 0.812 | 0.862 | 0.813 | 0.860 |
源域→ 目标域 | 准确率 | F1值 | ||
---|---|---|---|---|
句子级 | 方面级 | 句子级 | 方面级 | |
平均值 | 0.792 | 0.858 | 0.802 | 0.861 |
B→D | 0.804 | 0.867 | 0.841 | 0.876 |
B→E | 0.743 | 0.854 | 0.820 | 0.852 |
B→K | 0.785 | 0.848 | 0.793 | 0.868 |
D→B | 0.824 | 0.877 | 0.813 | 0.866 |
D→E | 0.780 | 0.826 | 0.762 | 0.837 |
D→K | 0.813 | 0.890 | 0.825 | 0.870 |
E→D | 0.760 | 0.857 | 0.796 | 0.848 |
E→K | 0.831 | 0.890 | 0.836 | 0.865 |
E→B | 0.772 | 0.854 | 0.766 | 0.855 |
K→D | 0.812 | 0.858 | 0.785 | 0.846 |
K→E | 0.816 | 0.864 | 0.804 | 0.878 |
K→B | 0.759 | 0.805 | 0.781 | 0.876 |
表3 英文语料上的不同粒度结果对比(m=0.1)
Tab. 3 Comparison of different granularity results on English corpus (m=0.1)
源域→ 目标域 | 准确率 | F1值 | ||
---|---|---|---|---|
句子级 | 方面级 | 句子级 | 方面级 | |
平均值 | 0.792 | 0.858 | 0.802 | 0.861 |
B→D | 0.804 | 0.867 | 0.841 | 0.876 |
B→E | 0.743 | 0.854 | 0.820 | 0.852 |
B→K | 0.785 | 0.848 | 0.793 | 0.868 |
D→B | 0.824 | 0.877 | 0.813 | 0.866 |
D→E | 0.780 | 0.826 | 0.762 | 0.837 |
D→K | 0.813 | 0.890 | 0.825 | 0.870 |
E→D | 0.760 | 0.857 | 0.796 | 0.848 |
E→K | 0.831 | 0.890 | 0.836 | 0.865 |
E→B | 0.772 | 0.854 | 0.766 | 0.855 |
K→D | 0.812 | 0.858 | 0.785 | 0.846 |
K→E | 0.816 | 0.864 | 0.804 | 0.878 |
K→B | 0.759 | 0.805 | 0.781 | 0.876 |
源域→ 目标域 | 准确率 | F1值 | ||
---|---|---|---|---|
句子级 | 方面级 | 句子级 | 方面级 | |
平均值 | 0.833 | 0.915 | 0.845 | 0.909 |
C→B | 0.794 | 0.906 | 0.874 | 0.893 |
C→H | 0.773 | 0.890 | 0.752 | 0.883 |
H→B | 0.852 | 0.934 | 0.846 | 0.910 |
H→C | 0.881 | 0.945 | 0.903 | 0.947 |
B→C | 0.860 | 0.947 | 0.865 | 0.957 |
B→H | 0.839 | 0.868 | 0.827 | 0.862 |
表4 中文语料上的不同粒度结果对比(m=0.2)
Tab. 4 Comparison of different granularity results on Chinese corpus (m=0.2)
源域→ 目标域 | 准确率 | F1值 | ||
---|---|---|---|---|
句子级 | 方面级 | 句子级 | 方面级 | |
平均值 | 0.833 | 0.915 | 0.845 | 0.909 |
C→B | 0.794 | 0.906 | 0.874 | 0.893 |
C→H | 0.773 | 0.890 | 0.752 | 0.883 |
H→B | 0.852 | 0.934 | 0.846 | 0.910 |
H→C | 0.881 | 0.945 | 0.903 | 0.947 |
B→C | 0.860 | 0.947 | 0.865 | 0.957 |
B→H | 0.839 | 0.868 | 0.827 | 0.862 |
源域→ 目标域 | 准确率 | F1值 | ||
---|---|---|---|---|
句子级 | 方面级 | 句子级 | 方面级 | |
平均值 | 0.817 | 0.889 | 0.824 | 0.893 |
B→D | 0.827 | 0.904 | 0.850 | 0.904 |
B→E | 0.812 | 0.891 | 0.764 | 0.889 |
B→K | 0.794 | 0.898 | 0.814 | 0.890 |
D→B | 0.831 | 0.894 | 0.861 | 0.902 |
D→E | 0.805 | 0.879 | 0.809 | 0.886 |
D→K | 0.826 | 0.911 | 0.837 | 0.902 |
E→D | 0.819 | 0.877 | 0.794 | 0.886 |
E→K | 0.883 | 0.903 | 0.892 | 0.918 |
E→B | 0.765 | 0.880 | 0.822 | 0.900 |
K→D | 0.822 | 0.874 | 0.801 | 0.883 |
K→E | 0.834 | 0.899 | 0.843 | 0.890 |
K→B | 0.790 | 0.858 | 0.796 | 0.865 |
表5 英文语料上的不同粒度结果对比(m=0.2)
Tab. 5 Comparison of different granularity results on English corpus(m=0.2)
源域→ 目标域 | 准确率 | F1值 | ||
---|---|---|---|---|
句子级 | 方面级 | 句子级 | 方面级 | |
平均值 | 0.817 | 0.889 | 0.824 | 0.893 |
B→D | 0.827 | 0.904 | 0.850 | 0.904 |
B→E | 0.812 | 0.891 | 0.764 | 0.889 |
B→K | 0.794 | 0.898 | 0.814 | 0.890 |
D→B | 0.831 | 0.894 | 0.861 | 0.902 |
D→E | 0.805 | 0.879 | 0.809 | 0.886 |
D→K | 0.826 | 0.911 | 0.837 | 0.902 |
E→D | 0.819 | 0.877 | 0.794 | 0.886 |
E→K | 0.883 | 0.903 | 0.892 | 0.918 |
E→B | 0.765 | 0.880 | 0.822 | 0.900 |
K→D | 0.822 | 0.874 | 0.801 | 0.883 |
K→E | 0.834 | 0.899 | 0.843 | 0.890 |
K→B | 0.790 | 0.858 | 0.796 | 0.865 |
源域→目标域 | SCL-MI | ITIAD | DANN | GCAE-TL | 本文方法 |
---|---|---|---|---|---|
平均值 | 0.743 | 0.742 | 0.748 | 0.751 | 0.795 |
B→D | 0.788 | 0.805 | 0.737 | 0.774 | 0.756 |
B→E | 0.719 | 0.730 | 0.680 | 0.763 | 0.812 |
B→K | 0.772 | 0.720 | 0.788 | 0.764 | 0.748 |
D→B | 0.732 | 0.670 | 0.750 | 0.752 | 0.796 |
D→E | 0.715 | 0.740 | 0.745 | 0.746 | 0.783 |
D→K | 0.740 | 0.710 | 0.776 | 0.747 | 0.786 |
E→B | 0.685 | 0.683 | 0.700 | 0.734 | 0.797 |
E→D | 0.704 | 0.775 | 0.710 | 0.794 | 0.856 |
E→K | 0.829 | 0.857 | 0.845 | 0.713 | 0.848 |
K→B | 0.693 | 0.679 | 0.712 | 0.723 | 0.806 |
K→D | 0.720 | 0.740 | 0.714 | 0.788 | 0.759 |
K→E | 0.822 | 0.800 | 0.821 | 0.718 | 0.788 |
表6 本文方法与迁移学习方法在英文语料上的准确率对比
Tab. 6 Accuracy comparison of the proposed method and transfer learning methods on English corpus
源域→目标域 | SCL-MI | ITIAD | DANN | GCAE-TL | 本文方法 |
---|---|---|---|---|---|
平均值 | 0.743 | 0.742 | 0.748 | 0.751 | 0.795 |
B→D | 0.788 | 0.805 | 0.737 | 0.774 | 0.756 |
B→E | 0.719 | 0.730 | 0.680 | 0.763 | 0.812 |
B→K | 0.772 | 0.720 | 0.788 | 0.764 | 0.748 |
D→B | 0.732 | 0.670 | 0.750 | 0.752 | 0.796 |
D→E | 0.715 | 0.740 | 0.745 | 0.746 | 0.783 |
D→K | 0.740 | 0.710 | 0.776 | 0.747 | 0.786 |
E→B | 0.685 | 0.683 | 0.700 | 0.734 | 0.797 |
E→D | 0.704 | 0.775 | 0.710 | 0.794 | 0.856 |
E→K | 0.829 | 0.857 | 0.845 | 0.713 | 0.848 |
K→B | 0.693 | 0.679 | 0.712 | 0.723 | 0.806 |
K→D | 0.720 | 0.740 | 0.714 | 0.788 | 0.759 |
K→E | 0.822 | 0.800 | 0.821 | 0.718 | 0.788 |
源域→目标域 | CDT | ASGCN | RAM | 本文方法 |
---|---|---|---|---|
平均值 | 0.778 | 0.769 | 0.736 | 0.795 |
B→D | 0.745 | 0.742 | 0.726 | 0.756 |
B→E | 0.782 | 0.805 | 0.647 | 0.812 |
B→K | 0.764 | 0.774 | 0.751 | 0.748 |
D→B | 0.738 | 0.727 | 0.739 | 0.796 |
D→E | 0.781 | 0.741 | 0.775 | 0.783 |
D→K | 0.752 | 0.735 | 0.706 | 0.786 |
E→B | 0.728 | 0.764 | 0.713 | 0.797 |
E→D | 0.836 | 0.782 | 0.750 | 0.856 |
E→K | 0.832 | 0.830 | 0.784 | 0.848 |
K→B | 0.773 | 0.781 | 0.732 | 0.806 |
K→D | 0.751 | 0.784 | 0.730 | 0.759 |
K→E | 0.820 | 0.763 | 0.781 | 0.788 |
表7 本文方法与方面级情感分析方法在英文语料上的准确率对比
Tab. 7 Accuracy comparison of the proposed method and aspect-level sentiment analysis methods on English corpus
源域→目标域 | CDT | ASGCN | RAM | 本文方法 |
---|---|---|---|---|
平均值 | 0.778 | 0.769 | 0.736 | 0.795 |
B→D | 0.745 | 0.742 | 0.726 | 0.756 |
B→E | 0.782 | 0.805 | 0.647 | 0.812 |
B→K | 0.764 | 0.774 | 0.751 | 0.748 |
D→B | 0.738 | 0.727 | 0.739 | 0.796 |
D→E | 0.781 | 0.741 | 0.775 | 0.783 |
D→K | 0.752 | 0.735 | 0.706 | 0.786 |
E→B | 0.728 | 0.764 | 0.713 | 0.797 |
E→D | 0.836 | 0.782 | 0.750 | 0.856 |
E→K | 0.832 | 0.830 | 0.784 | 0.848 |
K→B | 0.773 | 0.781 | 0.732 | 0.806 |
K→D | 0.751 | 0.784 | 0.730 | 0.759 |
K→E | 0.820 | 0.763 | 0.781 | 0.788 |
源域→目标域 | SCL-MI | ITIAD | DANN | GCAE-TL | 本文方法 |
---|---|---|---|---|---|
平均值 | 0.694 | 0.714 | 0.732 | 0.707 | 0.779 |
C→B | 0.640 | 0.725 | 0.702 | 0.667 | 0.742 |
C→H | 0.703 | 0.740 | 0.735 | 0.704 | 0.751 |
H→B | 0.682 | 0.694 | 0.750 | 0.529 | 0.736 |
H→C | 0.754 | 0.746 | 0.723 | 0.857 | 0.884 |
B→C | 0.793 | 0.769 | 0.775 | 0.758 | 0.805 |
B→H | 0.591 | 0.607 | 0.706 | 0.724 | 0.760 |
表8 本文方法与迁移学习方法在中文语料上的准确率对比
Tab. 8 Accuracy comparison of the proposed method and transfer learning methods on Chinese corpus
源域→目标域 | SCL-MI | ITIAD | DANN | GCAE-TL | 本文方法 |
---|---|---|---|---|---|
平均值 | 0.694 | 0.714 | 0.732 | 0.707 | 0.779 |
C→B | 0.640 | 0.725 | 0.702 | 0.667 | 0.742 |
C→H | 0.703 | 0.740 | 0.735 | 0.704 | 0.751 |
H→B | 0.682 | 0.694 | 0.750 | 0.529 | 0.736 |
H→C | 0.754 | 0.746 | 0.723 | 0.857 | 0.884 |
B→C | 0.793 | 0.769 | 0.775 | 0.758 | 0.805 |
B→H | 0.591 | 0.607 | 0.706 | 0.724 | 0.760 |
源域→目标域 | CDT | ASGCN | RAM | 本文方法 |
---|---|---|---|---|
平均值 | 0.741 | 0.738 | 0.709 | 0.779 |
C→B | 0.721 | 0.715 | 0.705 | 0.742 |
C→H | 0.740 | 0.726 | 0.734 | 0.751 |
H→B | 0.705 | 0.724 | 0.694 | 0.736 |
H→C | 0.751 | 0.787 | 0.686 | 0.884 |
B→C | 0.772 | 0.732 | 0.714 | 0.805 |
B→H | 0.756 | 0.744 | 0.721 | 0.760 |
表9 本文方法与方面级情感分析方法在中文语料上的准确率对比
Tab. 9 Accuracy comparison of the proposed method and aspect-level sentiment analysis methods on Chinese corpus
源域→目标域 | CDT | ASGCN | RAM | 本文方法 |
---|---|---|---|---|
平均值 | 0.741 | 0.738 | 0.709 | 0.779 |
C→B | 0.721 | 0.715 | 0.705 | 0.742 |
C→H | 0.740 | 0.726 | 0.734 | 0.751 |
H→B | 0.705 | 0.724 | 0.694 | 0.736 |
H→C | 0.751 | 0.787 | 0.686 | 0.884 |
B→C | 0.772 | 0.732 | 0.714 | 0.805 |
B→H | 0.756 | 0.744 | 0.721 | 0.760 |
1 | PANG B, LEE L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1/2): 1-135. 10.1561/1500000011 |
2 | ISHAQ A, ASGHAR S, GILLANI S A. Aspect-based sentiment analysis using a hybridized approach based on CNN and GA[J]. IEEE Access, 2020, 8: 135499-135512. 10.1109/access.2020.3011802 |
3 | LI X, BING L D, ZHANG W X, et al. Exploiting BERT for end-to-end aspect-based sentiment analysis[C]// Proceedings of the 5th Workshop on Noisy User-generated Text. Stroudsburg, PA: Association for Computational Linguistics, 2019: 34-41. 10.18653/v1/d19-5505 |
4 | 贺萌.基于域适应的跨领域情感分类方法研究[D]. 北京:北京工业大学, 2020:45-64. |
HE M. Research on domain adaption based cross-domain sentiment classification method[D]. Beijing: Beijing University of Technology, 2020:45-64. | |
5 | 赵光耀,吕成国,付国宏,等. 基于领域特有情感词注意力模型的跨领域属性情感分析[J]. 中文信息学报, 2021, 35(6): 93-102. 10.3969/j.issn.1003-0077.2021.06.010 |
ZHAO G Y, LYU C G, FU G H, et al. Domain specific sentiment words based attention model for cross-domain attribute-oriented sentiment analysis[J]. Journal of Chinese Information Processing, 2021, 35(6): 93-102. 10.3969/j.issn.1003-0077.2021.06.010 | |
6 | 孟佳娜,吕品,于玉海,等. 基于CNN的方面级跨领域情感分析研究[J]. 计算机工程与应用, 2022, 58(16):175-183. 10.3778/j.issn.1002-8331.2101-0316 |
MENG J N, LYU P, YU Y H, et al. Aspect-level cross-domain sentiment analysis based on CNN[J]. Computer Engineering and Applications, 2022, 58(16):175-183. 10.3778/j.issn.1002-8331.2101-0316 | |
7 | MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 4068-4074. 10.24963/ijcai.2017/568 |
8 | 王昆,郑毅,方书雅,等. 基于文本筛选和改进BERT的长文本方面级情感分析[J]. 计算机应用, 2020, 40(10):2838-2844. 10.11772/j.issn.1001-9081.2020020164 |
WANG K, ZHENG Y, FANG S Y, et al. Long text aspect-level sentiment analysis based on text filtering and improved BERT[J]. Journal of Computer Applications, 2020, 40(10):2838-2844. 10.11772/j.issn.1001-9081.2020020164 | |
9 | DU C N, SUN H F, WANG J Y, et al. Capsule network with interactive attention for aspect-level sentiment classification[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019: 5489-5498. 10.18653/v1/d19-1551 |
10 | 支淑婷,李晓戈,王京博,等. 基于多注意力长短时记忆的实体属性情感分析[J]. 计算机应用, 2019, 39(1):160-167. 10.11772/j.issn.1001-9081.2018061232 |
ZHI S T, LI X G, WANG J B, et al. Sentiment analysis of entity aspects based on multi-attention long short-term memory[J]. Journal of Computer Applications, 2019, 39(1):160-167. 10.11772/j.issn.1001-9081.2018061232 | |
11 | ZHU P S, QIAN T Y. Enhanced aspect level sentiment classification with auxiliary memory[C]// Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 1077-1087. |
12 | 武婷,曹春萍. 融合位置权重的基于注意力交叉注意力的长短期记忆方面情感分析模型[J]. 计算机应用, 2019, 39(8):2198-2203. 10.11772/j.issn.1001-9081.2018122565 |
WU T, CAO C P. Aspect level sentiment classification model with location weight and long-short term memory based on attention-over-attention[J]. Journal of Computer Applications, 2019, 39(8):2198-2203. 10.11772/j.issn.1001-9081.2018122565 | |
13 | YOSINSKI J, CLUNE J, BENGIOY, et al. How transferable are features in deep neural networks?[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 3320-3328. |
14 | LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks[C]// Proceedings of the 32nd Conference on International Conference on Machine Learning. New York: JMLR.org, 2015: 97-105. |
15 | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17: 1-35. 10.1007/978-3-319-58347-1_10 |
16 | XU R F, XU J, WANG X L. Instance level transfer learning for cross lingual opinion analysis[C]// Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis. Stroudsburg, PA: Association for Computational Linguistics, 2011: 182-188. |
17 | LI Z, ZHANG Y, WEI Y, et al. End-to-end adversarial memory network for cross-domain sentiment classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 2237-2243. 10.24963/ijcai.2017/311 |
18 | HINTON G, SABOUR S, FROSST N. Matrix capsules with EM routing[EB/OL]. (2018-02-16) [2021-10-18].. |
19 | ZHAO W, YE J B, YANG M, et al. Investigating capsule networks with dynamic routing for text classification[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018: 3110-3119. 10.18653/v1/d18-1350 |
20 | WU Q, TAN S B. A two-stage framework for cross-domain sentiment classification[J]. Expert Systems with Applications, 2011, 38(11): 14269-14275. |
21 | BLITZER J, DREDZE M, PEREIRA F. Biographies, Bollywood, boom-boxes and blenders: domain adaptation for sentiment classification[C]// Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2007: 440-447. 10.3115/1557690.1557765 |
22 | SHARMA R, BHATTACHARYYA P, DANDAPAT S, et al. Identifying transferable information across domains for cross-domain sentiment classification[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 968-978. 10.18653/v1/p18-1089 |
23 | SUN K, ZHANG R C, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019: 5679-5688. 10.18653/v1/d19-1569 |
24 | ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019: 4568-4578. 10.18653/v1/d19-1464 |
25 | CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017: 452-461. 10.18653/v1/d17-1047 |
[1] | 吴相岚, 肖洋, 刘梦莹, 刘明铭. 基于语义增强模式链接的Text-to-SQL模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2689-2695. |
[2] | 杜郁, 朱焱. 构建预训练动态图神经网络预测学术合作行为消失[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2726-2731. |
[3] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[4] | 李晨阳, 张龙, 郑秋生, 钱少华. 基于扩散序列的多元可控文本生成[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2414-2420. |
[5] | 赵征宇, 罗景, 涂新辉. 基于多粒度语义融合的信息检索方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1775-1780. |
[6] | 柯添赐, 刘建华, 孙水华, 郑智雄, 蔡子杰. 融合强关联依赖和简洁语法的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1786-1795. |
[7] | 魏超, 陈艳平, 王凯, 秦永彬, 黄瑞章. 基于掩码提示与门控记忆网络校准的关系抽取方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1713-1719. |
[8] | 杨先凤, 汤依磊, 李自强. 基于交替注意力机制和图卷积网络的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1058-1064. |
[9] | 余杭, 周艳玲, 翟梦鑫, 刘涵. 基于预训练模型与标签融合的文本分类[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 709-714. |
[10] | 郭磊, 贾真, 李天瑞. 面向方面级情感分析的交互式关系图注意力网络[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 696-701. |
[11] | 王楷天, 叶青, 程春雷. 基于异构图表示的中医电子病历分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 411-417. |
[12] | 林翔, 金彪, 尤玮婧, 姚志强, 熊金波. 基于脆弱指纹的深度神经网络模型完整性验证框架[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3479-3486. |
[13] | 高芸芸, 赵腊生, 张强. 基于双向长短时记忆和卷积Transformer的声学词嵌入模型[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 123-128. |
[14] | 田悦霖, 黄瑞章, 任丽娜. 融合局部语义特征的学者细粒度信息提取方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2707-2714. |
[15] | 张心月, 刘蓉, 魏驰宇, 方可. 融合提示知识的方面级情感分析方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2753-2759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||