《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (9): 2917-2925.DOI: 10.11772/j.issn.1001-9081.2021071213
所属专题: 多媒体计算与计算机仿真
李国中1, 崔娅1, 俄木依欣1, 何凌1, 李元媛2(), 熊熙3
收稿日期:
2021-07-13
修回日期:
2021-11-14
接受日期:
2021-11-17
发布日期:
2022-09-19
出版日期:
2022-09-10
通讯作者:
李元媛
作者简介:
李国中(1994—),男,河南商丘人,硕士研究生,主要研究方向:自然语言分析、机器学习、语音信号处理、医学信号处理;基金资助:
Guozhong LI1, Ya CUI1, Yixin EMU1, Ling HE1, Yuanyuan LI2(), Xi XIONG3
Received:
2021-07-13
Revised:
2021-11-14
Accepted:
2021-11-17
Online:
2022-09-19
Published:
2022-09-10
Contact:
Yuanyuan LI
About author:
LI Guozhong, born in 1994, M. S. candidate. His research interests include natural language analysis, machine learning, speech signal processing, medical signal processing.Supported by:
摘要:
针对注意缺陷与多动障碍(ADHD)临床诊断主要依靠医生主观评估,缺乏客观辅助依据的问题,提出了一种基于语音停顿度和平坦度的ADHD自动检测算法。首先,通过频带差能熵积(FDEEP)参数自动定位语音有话区间,并提取停顿度特征;然后,使用变换平均幅度平方差(TAASD)参数计算语音倍频率,并提取平坦度特征;最后,结合融合特征和支持向量机(SVM)分类器来实现ADHD的自动识别。实验共采集了17位正常对照组儿童和37位ADHD患儿的语音样本。实验结果表明,所提算法能自动检测正常儿童和ADHD患儿,识别正确率为91.38%。
中图分类号:
李国中, 崔娅, 俄木依欣, 何凌, 李元媛, 熊熙. 基于语音停顿度和平坦度的注意缺陷与多动障碍自动检测算法[J]. 计算机应用, 2022, 42(9): 2917-2925.
Guozhong LI, Ya CUI, Yixin EMU, Ling HE, Yuanyuan LI, Xi XIONG. Automatic detection algorithm for attention deficit/hyperactivity disorder based on speech pause and flatness[J]. Journal of Computer Applications, 2022, 42(9): 2917-2925.
图1 基于语音停顿度和倍频率平坦度的注意缺陷与多动障碍自动识别算法流程
Fig. 1 Flowchart of automatic recognition algorithm for attention deficit/hyperactivity disorder based on speech pause and multi-frequency flatness
数据集序号 | 儿童类别及个数 | 语音样本数 |
---|---|---|
1 | NM17和NADHD16 | 99 |
2 | NM17和RADHD21 | 114 |
3 | NADHD16和RADHD21 | 111 |
4 | NM17和ADHD37 | 162 |
表1 ADHD患者与正常对照组的语音样本子数据集
Tab. 1 Speech sample sub datasets of ADHD patients and normal controls
数据集序号 | 儿童类别及个数 | 语音样本数 |
---|---|---|
1 | NM17和NADHD16 | 99 |
2 | NM17和RADHD21 | 114 |
3 | NADHD16和RADHD21 | 111 |
4 | NM17和ADHD37 | 162 |
数据集序号 | 停顿度特征+平坦度特征 | 停顿度特征 | 平坦度特征 | ||||||
---|---|---|---|---|---|---|---|---|---|
正确率 | 特异性 | 灵敏度 | 正确率 | 特异性 | 灵敏度 | 正确率 | 特异性 | 灵敏度 | |
1 | 91.38 | 93.84 | 89.38 | 92.76 | 90.06 | 95.68 | 90.69 | 88.73 | 92.57 |
2 | 74.70 | 78.38 | 80.65 | 56.36 | 44.13 | 67.03 | 81.82 | 83.13 | 80.59 |
3 | 90.90 | 89.47 | 92.86 | 84.68 | 81.34 | 87.10 | 90.63 | 92.85 | 88.89 |
4 | 80.41 | 84.16 | 72.78 | 66.67 | 71.89 | 85.53 | 80.21 | 66.23 | 86.81 |
表2 本文算法的ADHD自动检测结果 ( %)
Tab. 2 ADHD automatic detection results of the proposed algorithm
数据集序号 | 停顿度特征+平坦度特征 | 停顿度特征 | 平坦度特征 | ||||||
---|---|---|---|---|---|---|---|---|---|
正确率 | 特异性 | 灵敏度 | 正确率 | 特异性 | 灵敏度 | 正确率 | 特异性 | 灵敏度 | |
1 | 91.38 | 93.84 | 89.38 | 92.76 | 90.06 | 95.68 | 90.69 | 88.73 | 92.57 |
2 | 74.70 | 78.38 | 80.65 | 56.36 | 44.13 | 67.03 | 81.82 | 83.13 | 80.59 |
3 | 90.90 | 89.47 | 92.86 | 84.68 | 81.34 | 87.10 | 90.63 | 92.85 | 88.89 |
4 | 80.41 | 84.16 | 72.78 | 66.67 | 71.89 | 85.53 | 80.21 | 66.23 | 86.81 |
本文提取的语音特征 | 显著性水平(p) |
---|---|
最长停顿时长 | 1.392 9E-19 |
平均停顿时长 | 2.944 3E-16 |
停顿时间占比 | 2.657 5E-12 |
倍频率方差 | 1.028 2E-15 |
倍频率离散系数 | 6.284 7E-11 |
倍频率峰度 | 6.010 0E-23 |
表3 显著性分析
Tab. 3 Significance analysis
本文提取的语音特征 | 显著性水平(p) |
---|---|
最长停顿时长 | 1.392 9E-19 |
平均停顿时长 | 2.944 3E-16 |
停顿时间占比 | 2.657 5E-12 |
倍频率方差 | 1.028 2E-15 |
倍频率离散系数 | 6.284 7E-11 |
倍频率峰度 | 6.010 0E-23 |
语音特征类别 | 正确率 | 特异性 | 灵敏度 |
---|---|---|---|
短时能量[ | 81.11 | 82.82 | 74.78 |
MFCC[ | 72.76 | 71.33 | 78.57 |
共振峰[ | 62.50 | 69.23 | 54.55 |
基频[ | 82.76 | 85.19 | 66.67 |
本文提出的停顿度和平坦度特征 | 91.38 | 93.84 | 89.38 |
表4 本文提取特征与传统病理语音特征自动检测ADHD的识别结果 (%)
Tab. 4 Recognition results of ADHD automatic detection of features extracted in this paper and traditional pathological voice features
语音特征类别 | 正确率 | 特异性 | 灵敏度 |
---|---|---|---|
短时能量[ | 81.11 | 82.82 | 74.78 |
MFCC[ | 72.76 | 71.33 | 78.57 |
共振峰[ | 62.50 | 69.23 | 54.55 |
基频[ | 82.76 | 85.19 | 66.67 |
本文提出的停顿度和平坦度特征 | 91.38 | 93.84 | 89.38 |
1 | KUBO Y, ANAZAWA T, KAWABATA Y, et al. Comparative analysis of the WISC between two ADHD subgroups[J]. Psychiatry Investigation, 2018, 15(2):172-177. 10.30773/pi.2017.07.12 |
2 | WANG T T, LIU K H, LI Z Z, et al. Prevalence of attention deficit/hyperactivity disorder among children and adolescents in China: a systematic review and meta-analysis[J]. BMC Psychiatry, 2017, 17: No.32. 10.1186/s12888-016-1187-9 |
3 | TSAI C J, LIN H Y, TSENG I W Y, et al. Brain voxel-based morphometry correlates of emotion dysregulation in attention-deficit hyperactivity disorder[J]. Brain Imaging and Behavior, 2021, 15(3):1388-1402. 10.1007/s11682-020-00338-y |
4 | GAIR S L, BROWN H R, KANG S, et al. Early development of comorbidity between symptoms of ADHD and anxiety[J]. Research on Child and Adolescent Psychopathology, 2021, 49(3):311-323. 10.1007/s10802-020-00724-6 |
5 | VALERO S, BOSCH R, COROMINAS M, et al. Remittance or persistence of Attention Deficit-Hyperactivity Disorder (ADHD) and its impact on recidivism in risky driving behaviors[J]. Traffic Injury Prevention, 2018, 19(7):701-707. 10.1080/15389588.2018.1505043 |
6 | DEW R E, KOLLINS S H, KOENIG H G. ADHD, religiosity, and psychiatric comorbidity in adolescence and adulthood[J]. Journal of Attention Disorders, 2022, 26(2):307-318. 10.1177/1087054720972803 |
7 | 李园园,张红霞,马丽华,等. 美国《精神障碍诊断与统计手册》第5版跨界症状量表在消化系统恶性肿瘤患者精神症状评估中的应用[J]. 临床精神医学杂志, 2020, 30(4):260-262. |
LI Y Y, ZHANG H X, MA L H, et al. Application of Diagnostic and Statistical Manual of Mental Disorders(DSM)-5 cross-cutting symptom measures in assessing the mental symptoms of patients with gastrointestinal malignant tumor[J]. Journal of Clinical Psychiatry, 2020, 30(4):260-262. | |
8 | 朱琳,李斐,陈立. 4种常见评定量表在儿童注意缺陷多动障碍诊断与随访管理中的应用[J]. 重庆医科大学学报, 2020, 45(1):32-35. |
ZHU L, LI F, CHEN L. Application of four commonly used rating scales in diagnosis and follow-up management of children with attention deficit hyperactivity disorder[J]. Journal of Chongqing Medical University, 2020, 45(1):32-35. | |
9 | KHALEGHI A, BIRGANI P M, FOOLADI M F, et al. Applicable features of electroencephalogram for ADHD diagnosis[J]. Research on Biomedical Engineering, 2020, 36(1):1-11. 10.1007/s42600-019-00036-9 |
10 | TANG Y B, LI X F, CHEN Y, et al. High-accuracy classification of attention deficit hyperactivity disorder with l2,1-norm linear discriminant analysis and binary hypothesis testing[J]. IEEE Access, 2020, 8:562828-56237. 10.1109/access.2020.2982401 |
11 | MUNOZ-ORGANERO M, POWELL L, HELLER B, et al. Using recurrent neural networks to compare movement patterns in ADHD and normally developing children based on acceleration signals from the wrist and ankle[J]. Sensors, 2019, 19(13): No.2935. 10.3390/s19132935 |
12 | NAKATANI M, OKADA S, SHIMIZU S, et al. Body movement analysis during sleep for children with ADHD using video image processing[C]// Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2013: 6389-6392. 10.1109/embc.2013.6611016 |
13 | LEVANTINI V, MURATORI P, INGUAGGIATO E, et al. Eyes are the window to the mind: eye-tracking technology as a novel approach to study clinical characteristics of ADHD[J]. Psychiatry Research, 2020, 290: No.113135. 10.1016/j.psychres.2020.113135 |
14 | JAYAWARDENA G, JAYARATHNA S. Automated filtering of eye gaze metrics from dynamic areas of interest[C]// Proceedings of the IEEE 21st International Conference on Information Reuse and Integration for Data Science. Piscataway: IEEE, 2020:67-74. 10.1109/iri49571.2020.00018 |
15 | MI L, WANG L, LI X Z, et al. Reduction of phonetic mismatch negativity may depict illness course and predict functional outcomes in schizophrenia[J]. Journal of Psychiatric Research, 2021,137:290-297. 10.1016/j.jpsychires.2021.02.065 |
16 | 张静,崔东红. 语音信号在精神疾病领域的应用[J]. 临床精神医学杂志, 2016, 26(3):203-205. |
ZHANG J, CUI D H. The application of speech signal in the field of mental illness[J]. Journal of Clinical Psychiatry, 2016, 26(3):203-205. | |
17 | COELHO R M, DRUMMOND C, MOTA N B, et al. Network analysis of narrative discourse and attention-deficit hyperactivity symptoms in adults[J]. PLoS ONE, 2021, 16(4): No.e0245113. 10.1371/journal.pone.0245113 |
18 | KONRAD K, EICKHOFF S B. Is the ADHD brain wired differently? a review on structural and functional connectivity in attention deficit hyperactivity disorder[J]. Human Brain Mapping, 2010, 31(6):904-916. 10.1002/hbm.21058 |
19 | ALTINKAYNAK M, GÜVEN A, DOLU N, et al. Prefrontal brain activation in subtypes of attention deficit hyperactivity disorder: a functional near-infrared spectroscopy study[J]. Electrica, 2018, 18(2):256-262. 10.26650/electrica.2018.99730 |
20 | HANKEY J R, LIU Y S, CHOKKA P R. Adult ADHD: prevalence, comorbidities, and patient-reported dysfunction in a tertiary mental health clinic[J]. Psychiatry and Clinical Psychopharmacology, 2020, 30(1):3-9. |
21 | PEHLIVANIDIS A, PAPANIKOLAOU K, KOROBILI K, et al. Trait-based dimensions discriminating adults with Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD) and, co-occurring ADHD/ASD[J]. Brain Sciences, 2021, 11(1): No.18. 10.3390/brainsci11010018 |
22 | FIGUEIREDO T, FORTES D, ERTHAL P, et al. Impulsivity as an endophenotype in ADHD: negative findings[J]. Journal of Attention Disorders, 2021, 25(4):502-507. 10.1177/1087054718816161 |
23 | ROSELLÓ B, BERENGUER C, BAIXAULI I, et al. Empirical examination of executive functioning, ADHD associated behaviors, and functional impairments in adults with persistent ADHD, remittent ADHD, and without ADHD[J]. BMC Psychiatry, 2020, 20: No.134. 10.1186/s12888-020-02542-y |
24 | ETTER N M, CADELY F A, PETERS M G, et al. Speech motor control and orofacial point pressure sensation in adults with ADHD[J]. Neuroscience Letters, 2020, 744: No.135592. 10.1016/j.neulet.2020.135592 |
25 | PETROLINI V, JORBA M, VICENTE A. The role of inner speech in executive functioning tasks: schizophrenia with auditory verbal hallucinations and autistic spectrum conditions as case studies[J]. Frontiers in Psychology, 2020, 11: No.572035. 10.3389/fpsyg.2020.572035 |
26 | BECKER S P, BURNS G L, SMITH Z R, et al. Sluggish cognitive tempo in adolescents with and without ADHD: differentiation from adolescent-reported ADHD inattention and unique associations with internalizing domains[J]. Journal of Abnormal Child Psychology, 2020, 48(3):391-406. 10.1007/s10802-019-00603-9 |
27 | ALMEIDA J S, REBOUÇAS FLIHO P P, CARNEIRO T, et al. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques[J]. Pattern Recognition Letters, 2019, 125: 55-62. 10.1016/j.patrec.2019.04.005 |
28 | POLAT K, NOUR M. Parkinson disease classification using one against all based data sampling with the acoustic features from the speech signals[J]. Medical Hypotheses, 2020, 3(140): No.109678. |
29 | NARENDRA N P, ALKU P. Dysarthric speech classification from coded telephone speech using glottal features[J]. Speech Communication, 2019, 110: 47-55. 10.1016/j.specom.2019.04.003 |
30 | VINCZE V, SZATLÓCZKI G, TÓTH L, et al. Telltale silence: temporal speech parameters discriminate between prodromal dementia and mild Alzheimer’s disease[J]. Clinical Linguistics and Phonetics, 2021, 35(8):727-742. 10.1080/02699206.2020.1827043 |
31 | NASROLAHZADEH M, MOHAMMADPOORY Z, HADDADNIA J. Higher-order spectral analysis of spontaneous speech signals in Alzheimer’s disease[J]. Cognitive Neurodynamics, 2018, 12(6):583-596. 10.1007/s11571-018-9499-8 |
32 | MARTINC M, HAIDER F, POLLAK S, et al. Temporal integration of text transcripts and acoustic features for Alzheimer’s diagnosis based on spontaneous speech[J]. Frontiers in Aging Neuroscience, 2021, 13: No.642647. 10.3389/fnagi.2021.642647 |
33 | GOSZTOLYA G, VINCZE V, TÓTH L, et al. Identifying mild cognitive impairment and mild Alzheimer’s disease based on spontaneous speech using ASR and linguistic features[J]. Computer Speech and Language, 2019, 53: 181-197. 10.1016/j.csl.2018.07.007 |
34 | PETTI U, BAKER S, KORHONEN A. A systematic literature review of automatic Alzheimer’s disease detection from speech and language[J]. Journal of the American Medical Informatics Association, 2020, 27(11):1784-1797. 10.1093/jamia/ocaa174 |
35 | BARRAGÁN-PULIDO M L, HERNÁNDEZ J B A, FERRER-BALLESTER M A, et al. Alzheimer’s disease and automatic speech analysis: a review[J]. Expert Systems with Applications, 2020, 150: No.113213. 10.1016/j.eswa.2020.113213 |
36 | YAMAMOTO M, TAKAMIYA A, SAWADA K, et al. Using speech recognition technology to investigate the association between timing-related speech features and depression severity[J]. PLoS ONE, 2020, 15(9): No.e0238726. 10.1371/journal.pone.0238726 |
37 | TAGUCHI T, TACHIKAWA H, NEMOTO K, et al. Major depressive disorder discrimination using vocal acoustic features[J]. Journal of Affective Disorders, 2018, 225:214-220. 10.1016/j.jad.2017.08.038 |
38 | DONG Y Z, YANG X Y. A hierarchical depression detection model based on vocal and emotional cues[J]. Neurocomputing, 2021, 441:279-290. 10.1016/j.neucom.2021.02.019 |
39 | JAGGER-RICKELS A C, KIBBY M Y, CONSTANCE J M. Global gray matter morphometry differences between children with reading disability, ADHD, and comorbid reading disability/ADHD[J]. Brain and Language, 2018, 185:54-66. 10.1016/j.bandl.2018.08.004 |
40 | ARICÒ M, ARIGLIANI E, GIANNOTTI F, et al. ADHD and ADHD-related neural networks in benign epilepsy with centrotemporal spikes: a systematic review[J]. Epilepsy and Behavior, 2020, 112: No.107448. 10.1016/j.yebeh.2020.107448 |
41 | SRIMADHUR N S, LALITHA S. An end-to-end model for detection and assessment of depression levels using speech[J]. Procedia Computer Science, 2020, 171: 12-21. 10.1016/j.procs.2020.04.003 |
42 | HE L, CAO C. Automated depression analysis using convolutional neural networks from speech[J]. Journal of Biomedical Informatics, 2018, 83: 103-111. 10.1016/j.jbi.2018.05.007 |
43 | CHLASTA K, WOŁK K, KREJTZ I. Automated speech-based screening of depression using deep convolutional neural networks[J]. Procedia Computer Science, 2019, 164: 618-628. 10.1016/j.procs.2019.12.228 |
44 | PAROLA A, SIMONSEN A, BLIKSTED V, et al. Voice patterns in schizophrenia: a systematic review and Bayesian meta-analysis[J]. Schizophrenia Research, 2020, 216:24-40. 10.1016/j.schres.2019.11.031 |
45 | RAPCAN V, D’ARCY S, YEAP S, et al. Acoustic and temporal analysis of speech: a potential biomarker for schizophrenia[J]. Medical Engineering and Physics, 2010, 32(9):1074-1079. 10.1016/j.medengphy.2010.07.013 |
46 | MARTÍNEZ-SÁNCHEZ F, MUELA-MARTÍNEZ J A, CORTÉS-SOTO P, et al. Can the acoustic analysis of expressive prosody discriminate schizophrenia?[J]. The Spanish Journal of Psychology, 2015, 18: No.e86. 10.1017/sjp.2015.85 |
47 | ZOUGHI T, HOMAYOUNPOUR M M, DEYPIR M. Adaptive windows multiple deep residual networks for speech recognition[J]. Expert Systems with Applications, 2020, 139: No.112840. 10.1016/j.eswa.2019.112840 |
48 | WU Y, MAO H, YI Z. Audio classification using attention-augmented convolutional neural network[J]. Knowledge-Based Systems, 2018, 161:90-100. 10.1016/j.knosys.2018.07.033 |
49 | LIU B, WANG Z, GUO S S, et al. An energy-efficient voice activity detector using deep neural networks and approximate computing[J]. Microelectronics Journal, 2019, 87:12-21. 10.1016/j.mejo.2019.03.009 |
50 | BREZNITZ Z. The speech and vocalization patterns of boys with ADHD compared with boys with dyslexia and boys without learning disabilities[J]. The Journal of Genetic Psychology, 2003, 164(4):425-452. 10.1080/00221320309597888 |
51 | BARONA-LLEO L, FERNANDEZ S. Hyperfunctional voice disorder in children with Attention Deficit Hyperactivity Disorder (ADHD). a phenotypic characteristic?[J]. Journal of Voice, 2016, 30(1):114-119. 10.1016/j.jvoice.2015.03.002 |
[1] | 王永彪, 张文喜, 王亚慧, 孔新新, 吕彤. 拉普拉斯分布下的MMSE谱减语音增强算法[J]. 计算机应用, 2020, 40(3): 878-882. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||