| 1 | HOFFMAN M D, BLEI D M, WANG C, et al. Stochastic variational inference[J]. Journal of Machine Learning Research, 2013, 14:1303-1347. | 
																													
																						| 2 | REYNOLDS D. Gaussian mixture models[M]// LI S Z, JAIN A K. Encyclopedia of Biometrics. Boston: Springer, 2009:659-663.  10.1007/978-0-387-73003-5_196 | 
																													
																						| 3 | BLEI D, CARIN L, DUNSON D. Probabilistic topic models[J]. IEEE Signal Processing Magazine, 2010, 27(6): 55-65. | 
																													
																						| 4 | TERENIN A, SIMPSON D, DRAPER D. Asynchronous Gibbs sampling[C]// Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2020:144-154. | 
																													
																						| 5 | MOON T K. The expectation-maximization algorithm[J]. IEEE Signal Processing Magazine, 1996, 13(6): 47-60.  10.1109/79.543975 | 
																													
																						| 6 | BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. | 
																													
																						| 7 | WANG X R, McCALLUM A. Topics over time: a non-Markov continuous-time model of topical trends[C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 424-433.  10.1145/1150402.1150450 | 
																													
																						| 8 | BLEI D M, LAFFERTY J D. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 113-120.  10.1145/1143844.1143859 | 
																													
																						| 9 | IWATA T, WATANABE S, YAMADA T, et al. Topic tracking model for analyzing consumer purchase behavior[C]// Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2009: 1427-1432. | 
																													
																						| 10 | AMOUALIAN H, CLAUSEL M, GAUSSIER E, et al. Streaming-LDA: a copula-based approach to modeling topic dependencies in document streams[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 695-704.  10.1145/2939672.2939781 | 
																													
																						| 11 | ZHAO Y K, LIANG S S, REN Z C, et al. Explainable user clustering in short text streams[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 155-164.  10.1145/2911451.2911522 | 
																													
																						| 12 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.  10.1126/science.1127647 | 
																													
																						| 13 | XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487. | 
																													
																						| 14 | RAIBER F, KURLAND O. Kullback-Leibler divergence revisited[C]// Proceedings of the 2017 ACM SIGIR International Conference on Theory of Information Retrieval. New York: ACM 2017: 117-124.  10.1145/3121050.3121062 | 
																													
																						| 15 | BO D Y, WANG X, SHI C, et al. Structural deep clustering network[C]// Proceedings of the Web Conference 2020. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2020: 1400-1410.  10.1145/3366423.3380214 | 
																													
																						| 16 | KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2022-12-10) [2023-02-25]..  10.1561/2200000056 | 
																													
																						| 17 | ZHANG D J, SUN Y F, ERIKSSON B, et al. Deep unsupervised clustering using mixture of autoencoders[EB/OL]. (2017-12-26) [2022-09-25].. | 
																													
																						| 18 | JIANG Z X, ZHENG Y, TAN H C, et al. Variational deep embedding: an unsupervised and generative approach to clustering[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 1965-1972.  10.24963/ijcai.2017/273 | 
																													
																						| 19 | BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.  10.1109/tpami.2013.50 | 
																													
																						| 20 | 侯艳辉,董慧芳,郝敏,等. 基于本体特征的影评细粒度情感分类[J]. 计算机应用, 2020, 40(4): 1074-1078. | 
																													
																						|  | HOU Y H, DONG H F, HAO M, et al. Fine-grained sentiment classification of film reviews based on ontological features[J]. Journal of Computer Applications, 2020, 40(4): 1074-1078. | 
																													
																						| 21 | KRASKOV A, STÖGBAUER H, GRASSBERGER P. Estimating mutual information[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(6): No.066138.  10.1103/physreve.69.066138 | 
																													
																						| 22 | JONKER R, VOLGENANT T. Improving the Hungarian assignment algorithm[J]. Operations Research Letters, 1986, 5(4): 171-175.  10.1016/0167-6377(86)90073-8 |