[1] 王凌,张冰,陈锡爱.基于计算机视觉的钢轨扣件螺母缺失检测系统[J].计算机工程与设计,2011,32(12):4147-4150.(WANG L, ZHANG B, CHEN X A. Inspection system for loss of rail fastening nut based on computer vision[J]. Computer Engineering and Design, 2011, 32(12):4147-4150.) [2] DOU Y, HUANG Y, LI Q, et al. A fast template matching-based algorithm for railway bolts detection[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(6):835-844. [3] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [4] 刘甲甲,李柏林,罗建桥,等.融合PHOG和MSLBP特征的铁路扣件检测算法[J].西南交通大学学报,2015,50(2):256-263.(LIU J J, LI B L, LUO J Q, et al. Railway fastener detection algorithm integrating PHOG and MSLBP features[J]. Journal of Southwest Jiaotong University, 2015, 50(2):256-263.) [5] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2012, 3:993-1022. [6] 杨赛,赵春霞.基于隐含狄利克雷分配模型的图像分类算法[J].计算机工程,2012,38(14):181-183.(YANG S, ZHAO C X. Image classification algorithm based on latent Dirichlet allocation model[J]. Computer Engineering, 2012, 38(14):181-183.) [7] 李斌,程丹,李星.基于Direct LDA的相关向量机遥感图像分类[J].信息技术,2017(4):17-20.(LI B, CHENG D, LI X. Relevant vector machine classification of hyperspectral image based on direct linear discriminant analysis[J]. Information Technology, 2017(4):17-20.) [8] 曾康林,刘汉文.基于LDA和SVM的图像场景分类[J].中国新通信,2018,20(10):125-127.(ZENG K L, LIU H W. Image scene classification based on LDA and SVM[J]. China New Telecommunications, 2018, 20(10):125-127.) [9] FENG H, JIANG Z, XIE F, et al. Automatic fastener classification and defect detection in vision-based railway inspection systems[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(4):877-888. [10] 罗建桥,刘甲甲,李柏林,等.融合纹理结构的潜在狄利克雷分布铁路扣件检测模型[J].计算机应用,2016,36(2):574-579.(LUO J Q, LIU J J, LI B L, et al. Latent dirichlet allocation model integrated with texture structure for railway fastener detection[J]. Journal of Computer Applications, 2016, 36(2):574-579.) [11] 罗建桥,刘甲甲,李柏林,等.基于局部特征和语义信息的扣件图像检测[J].计算机应用研究,2016,33(8):2514-2518.(LUO J Q, LIU J J, LI B L, et al. Detection for railway fasteners based on local features and semantic information[J]. Application Research of Computers, 2016, 33(8):2514-2518.) [12] 赵理君,唐娉,霍连志,等.图像场景分类中视觉词包模型方法综述[J].中国图象图形学报,2014,19(3):333-343.(ZHAO L J, TANG P, HUO L Z, et al. Review of the bag-of-visual-words models in image scene classification[J]. Journal of Image and Graphics, 2014, 19(3):333-343.) [13] GUO Q, LI N, YANG Y, et al. Supervised LDA for image annotation[C]//Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway, NJ:IEEE, 2011:471-476. [14] ZHOU H. Markov weight fields for face sketch synthesis[C]//CVPR'12:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2012:1091-1097. [15] PENG C, GAO X, WANG N, et al. Graphical representation for heterogeneous face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2):301-312. [16] WANG N, GAO X, LI J. Random sampling for fast face sketch synthesis[J]. Pattern Recognition, 2018, 76:215-227. [17] ZHANG C, ZHU X, LI L, et al. Joint image representation and classification in random semantic spaces[J]. Neurocomputing, 2015, 156(C):79-85. [18] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. [19] 李永波,李柏林,熊鹰.基于HOG特征的铁路扣件状态检测[J].传感器与微系统,2013,32(10):110-113.(LI Y B, LI B L, XIONG Y. Railway fastener state detection based on HOG feature[J]. Transducer and Microsystem Technologies, 2013, 32(10):110-113.) [20] WANG Y, LIN X, WU L, et al. Effective multi-query expansions:collaborative deep networks based feature learning for robust landmark retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(3):1393-1404. [21] HUANG C, LUO W, XIE Y. Local-class-shared-topic latent Dirichlet allocation based scene classification[J]. Multimedia Tools and Applications, 2017, 76(14):15661-15679. |