| 1 | 
																						 
											 KRAWETZ N. A picture’s worth digital image analysis and forensics[C/OL] // Proceedings of the Black Hat Briefings USA 2007 [2022-06-22]..
											 											 | 
										
																													
																						| 2 | 
																						 
											 MAHDIAN B, SAIC S. Using noise inconsistencies for blind image forensics[J]. Image and Vision Computing, 2009, 27(10): 1497-1503.  10.1016/j.imavis.2009.02.001 
											 											 | 
										
																													
																						| 3 | 
																						 
											 FERRARA P, BIANCHI T, DE ROSA A, et al. Image forgery localization via fine-grained analysis of CFA artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1566-1577.  10.1109/tifs.2012.2202227 
											 											 | 
										
																													
																						| 4 | 
																						 
											 BAYAR B, STAMM M C. A deep learning approach to universal image manipulation detection using a new convolutional layer[C]// Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2016: 5-10.  10.1145/2909827.2930786 
											 											 | 
										
																													
																						| 5 | 
																						 
											 YANG Q W, PENG F, LI J T, et al. Image tamper detection based on noise estimation and lacunarity texture[J]. Multimedia Tools and Applications, 2016, 75(17): 10201-10211.  10.1007/s11042-015-3079-2 
											 											 | 
										
																													
																						| 6 | 
																						 
											 BI X L, WEI Y, XIAO B, et al. RRU-Net: the ringed residual U-Net for image splicing forgery detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019:30-39.  10.1109/cvprw.2019.00010 
											 											 | 
										
																													
																						| 7 | 
																						 
											 吴鹏,陈北京,郑雨鑫,等. 基于双流Faster R-CNN的像素级图像拼接篡改定位算法[J]. 电子测量与仪器学报, 2021, 35(4):154-160.
											 											 | 
										
																													
																						 | 
																						 
											 WU P, CHEN B J, ZHENG Y X, et al. Pixel-level image splicing localization algorithm based on dual-stream Faster R-CNN[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(4): 154-160.
											 											 | 
										
																													
																						| 8 | 
																						 
											 ZHONG J L, PUN C M. An end-to-end Dense-InceptionNet for image copy-move forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2020 15: 2134-2146.  10.1109/tifs.2019.2957693 
											 											 | 
										
																													
																						| 9 | 
																						 
											 李应灿,杨建权,丁峰,等. 区分来源和目标区域的图像copy-move伪造检测方法[J]. 信号处理, 2020, 36(9):1533-1543.  10.16798/j.issn.1003-0530.2020.09.019 
											 											 | 
										
																													
																						 | 
																						 
											 LI Y C, YANG J Q, DING F, et al. Copy-move detection method for distinguishing between source and target regions[J]. Journal of Signal Processing, 2020, 36(9):1533-1543.  10.16798/j.issn.1003-0530.2020.09.019 
											 											 | 
										
																													
																						| 10 | 
																						 
											 ZHU X S, QIAN Y J, ZHAO X F, et al. A deep learning approach to patch-based image inpainting forensics[J]. Signal Processing: Image Communication, 2018, 67: 90-99.  10.1016/j.image.2018.05.015 
											 											 | 
										
																													
																						| 11 | 
																						 
											 WU Y, AbdALMAGEED W, NATARAJAN P. ManTra-Net: manipulation tracing network for detection and localization of image forgeries with anomalous features[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9535-9544.  10.1109/cvpr.2019.00977 
											 											 | 
										
																													
																						| 12 | 
																						 
											 BIACH F Z EL, IALA I, LAANAYA H, et al. Encoder-decoder based convolutional neural networks for image forgery detection[J]. Multimedia Tools and Applications, 2022, 81(16): 22611-22628.  10.1007/s11042-020-10158-3 
											 											 | 
										
																													
																						| 13 | 
																						 
											 ZHUO L, TAN S Q, LI B, et al. Self-Adversarial training incorporating forgery attention for image forgery localization[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 819-834.  10.1109/tifs.2022.3152362 
											 											 | 
										
																													
																						| 14 | 
																						 
											 BAPPY J H, SIMONS C, NATARAJ L, et al. Hybrid LSTM and encoder-decoder architecture for detection of image forgeries[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3286-3300.  10.1109/tip.2019.2895466 
											 											 | 
										
																													
																						| 15 | 
																						 
											 ZHOU P, HAN X T, MORARIU V I, et al. Learning rich features for image manipulation detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1053-1061.  10.1109/cvpr.2018.00116 
											 											 | 
										
																													
																						| 16 | 
																						 
											 MAZUMDAR A, BORA P K. Two-stream encoder-decoder network for localizing image forgeries[J]. Journal of Visual Communication and Image Representation, 2022, 82: No.103417.  10.1016/j.jvcir.2021.103417 
											 											 | 
										
																													
																						| 17 | 
																						 
											 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.  10.1109/cvpr.2016.90 
											 											 | 
										
																													
																						| 18 | 
																						 
											 FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149.  10.1109/cvpr.2019.00326 
											 											 | 
										
																													
																						| 19 | 
																						 
											 ZHU Y, CHEN C F, YAN G, et al. AR-Net: adaptive attention and residual refinement network for copy-move forgery detection[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6714-6723.  10.1109/TII.2020.2982705 
											 											 | 
										
																													
																						| 20 | 
																						 
											 nimble NIST 2016 datasets[DS/OL]. [2022-06-20]..
											 											 | 
										
																													
																						| 21 | 
																						 
											 WEN B H, ZHU Y, SUBRAMANIAN R, et al. COVERAGE - a novel database for copy-move forgery detection[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 161-165.  10.1109/icip.2016.7532339 
											 											 | 
										
																													
																						| 22 | 
																						 
											 DONG J, WANG W, TAN T N. CASIA image tampering detection evaluation database[C]// Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing. Piscataway: IEEE, 2013: 422-426.  10.1109/chinasip.2013.6625374 
											 											 | 
										
																													
																						| 23 | 
																						 
											 NG T T, CHANG S F. A data set of authentic and spliced image blocks: DVENT Technical Report # 203-2004-3[R/OL]. (2004-06-08) [2022-06-23]..
											 											 |