1 |
赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848.
|
|
ZHAO Y Y, QIN B, LIU T. Sentiment analysis [J]. Journal of Software, 2010, 21(8): 1834-1848.
|
2 |
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 Task 4: aspect based sentiment analysis[C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35.
|
3 |
YIN Y, WEI F, DONG L, et al. Unsupervised word and dependency path embeddings for aspect term extraction[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2979-2985.
|
4 |
WU Z, ZHAO F, DAI X-Y, et al. Latent opinions transfer network for target-oriented opinion words extraction[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 9298-9305.
|
5 |
LI X, BING L, LI P, et al. Aspect term extraction with history attention and selective transformation[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 4194-4200.
|
6 |
FERNANDO J, KHODRA M L, SEPTIANDRI A A. Aspect and opinion terms extraction using double embeddings and attention mechanism for Indonesian hotel reviews[C]// Proceedings of the 2019 International Conference of Advanced Informatics: Concepts, Theory and Applications. Piscataway: IEEE, 2019: 1-6.
|
7 |
JEBBARA S, CIMIANO P. Improving opinion-target extraction with character-level word embeddings[C]// Proceedings of the First Workshop on Subword and Character Level Models in NLP. Stroudsburg: ACL, 2017: 159-167.
|
8 |
KLINGER R, CIMIANO P. Joint and pipeline probabilistic models for fine-grained sentiment analysis: extracting aspects, subjective phrases and their relations[C]// Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops. Piscataway: IEEE, 2013: 937-944.
|
9 |
TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 214-224.
|
10 |
MA D, LI S, ZHANG X. Interactive attention networks for aspect-level sentiment classification[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4068-4074.
|
11 |
LI X, BING L, LAM W, et al. Transformation networks for target-oriented sentiment classification[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 946-956.
|
12 |
PENG H, XU L, BING L, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8600-8607.
|
13 |
XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2339-2349.
|
14 |
WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 2576-2585.
|
15 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computing, 1997, 9(8): 1735-1780.
|
16 |
VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 6000-6010.
|
17 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2016-09-09) [2023-10-01]. .
|
18 |
MUKHERJEE R, NAYAK T, BUTALA Y, et al. PASTE: a tagging-free decoding framework using pointer networks for aspect sentiment triplet extraction[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 9279-9291.
|
19 |
ZHOU T, SHEN Y, CHEN K, et al. Hierarchical dual graph convolutional network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2023, 276: 110740.
|
20 |
刘辉,马祥,张琳玉,等.融合匹配长短时记忆网络和语法距离的方面级情感分析模型[J].计算机应用,2023,43(1):45-50.
|
|
LIU H, MA X, ZHANG L Y, et al. Aspect-based sentiment analysis model integrating match-LSTM network and grammatical distance [J]. Journal of Computer Applications, 2023, 43(1): 45-50.
|
21 |
LI Y, HE Q, ZHANG D. Dual graph convolutional networks integrating affective knowledge and position information for aspect sentiment triplet extraction[J]. Frontiers in Neurorobotics, 2023, 17: 1193011.
|
22 |
PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 Task 12: aspect based sentiment analysis[C]// Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2015: 486-495.
|
23 |
PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 Task 5: aspect based sentiment analysis[C]// Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 19-30.
|
24 |
DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
|
25 |
LOSHCHILOV I, HUTTER F. Fixing weight decay regularization in Adam [EB/OL]. (2017-11-14) [2023-10-01]. .
|
26 |
LI X, BING L, LI P, et al. A unified model for opinion target extraction and target sentiment prediction[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 6714-6721.
|
27 |
HE R, LEE W S, NG H T, et al. An interactive multi-task learning network for end-to-end aspect-based sentiment analysis [EB/OL]. (2019-06-17) [2023-10-01]. .
|
28 |
CHEN Z, HUANG H, LIU B, et al. Semantic and syntactic enhanced aspect sentiment triplet extraction[C]// Finding of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1474-1483.
|