《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (10): 3162-3169.DOI: 10.11772/j.issn.1001-9081.2022091418
田鹏新1, 司冠南1(), 安兆亮1, 李建辛1, 周风余2
收稿日期:
2022-09-22
修回日期:
2023-01-05
接受日期:
2023-01-06
发布日期:
2023-03-16
出版日期:
2023-10-10
通讯作者:
司冠南
作者简介:
田鹏新(1999—),男,山东济宁人,硕士研究生,主要研究方向:大数据、边缘计算基金资助:
Pengxin TIAN1, Guannan SI1(), Zhaoliang AN1, Jianxin LI1, Fengyu ZHOU2
Received:
2022-09-22
Revised:
2023-01-05
Accepted:
2023-01-06
Online:
2023-03-16
Published:
2023-10-10
Contact:
Guannan SI
About author:
TIAN Pengxin, born in 1999, M.S. candidate. His research interests include big data, edge computing.Supported by:
摘要:
随着物联网(IoT)的快速发展,大量在传感器等边缘场景产生的数据需要传输至云节点处理,这带来了极大的传输成本和处理时延,而云边协同为这些问题提供了有效的解决方案。首先,在全面调查和分析云边协同发展过程的基础上,结合当前云边智能协同中的研究思路与进展,重点分析和讨论了云边架构中的数据采集与分析、计算迁移技术以及基于模型的智能优化技术;其次,分别从边缘端和云端深入分析了各种技术在云边智能协同中的作用及应用,并探讨了云边智能协同技术在现实中的应用场景;最后,指出了云边智能协同目前存在的挑战及未来的发展方向。
中图分类号:
田鹏新, 司冠南, 安兆亮, 李建辛, 周风余. 基于数据驱动的云边智能协同综述[J]. 计算机应用, 2023, 43(10): 3162-3169.
Pengxin TIAN, Guannan SI, Zhaoliang AN, Jianxin LI, Fengyu ZHOU. Survey of data-driven intelligent cloud-edge collaboration[J]. Journal of Computer Applications, 2023, 43(10): 3162-3169.
1 | CHEN Z, DI Y, YUAN H, et al. Intelligent cloud training system based on edge computing and cloud computing[C]// Proceedings of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2020: 1550-1553. 10.1109/itnec48623.2020.9084987 |
2 | OLMOS J J V, CUGINI F, BUINING F, et al. Big data processing and artificial intelligence at the network edge[C]// Proceedings of the 22nd International Conference on Transparent Optical Networks. Piscataway: IEEE, 2020: 1-4. 10.1109/icton51198.2020.9203141 |
3 | ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1738-1762. 10.1109/jproc.2019.2918951 |
4 | QING L. A 5G PaaS collaborative management and control platform technology based on cloud edge collaboration based on particle swarm optimization algorithm[C]// Proceedings of the 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers. Piscataway: IEEE, 2021: 144-147. 10.1109/ipec51340.2021.9421164 |
5 | ZHANG H, CHEN S, ZOU P, et al. Research and application of industrial equipment management service system based on cloud-edge collaboration[C]// Proceedings of the 2019 Chinese Automation Congress. Piscataway: IEEE, 2019: 5451-5456. 10.1109/cac48633.2019.8996876 |
6 | PALLIS G, VAKALI A. Insight and perspectives for content delivery networks[J]. Communications of the ACM, 2006, 49(1):101-106. 10.1145/1107458.1107462 |
7 | SATYANARAYANAN M, BAHL P, CACERES R, et al. The case for VM-based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009, 8(4): 14-23. 10.1109/mprv.2009.82 |
8 | LaMOTHE R. Edge computing[EB/OL]. [2022-07-11].. |
9 | HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing - a key technology towards 5G: ETSI White Paper No.11[R/OL]. [2022-07-11].. |
10 | 孔令娜,郭会明,焦函. 一种面向数据采集任务的云边协同计算框架[J]. 数字技术与应用, 2021, 39(2):165-167. 10.19695/j.cnki.cn12-1369.2021.02.53 |
KONG L N, GUO H M, JIAO H. A cloud-edge collaboration framework for data collection[J]. Digital Technology and Application, 2021, 39(2):165-167. 10.19695/j.cnki.cn12-1369.2021.02.53 | |
11 | LUO Y, ZHU X, LONG J. Data collection through mobile vehicles in edge network of smart city[J]. IEEE Access, 2019, 7:168467-168483. 10.1109/access.2019.2951587 |
12 | JIAO Z, DING H, DANG M, et al. Predictive big data collection in vehicular networks: a software defined networking based approach[C]// Proceedings of the 2016 IEEE Global Communications Conference. Piscataway: IEEE, 2016: 1-6. 10.1109/glocom.2016.7842165 |
13 | CAO L, YUE Y, ZHANG Y. A data collection strategy for heterogeneous wireless sensor networks based on energy efficiency and collaborative optimization[J]. Computational Intelligence and Neuroscience, 2021, 2021: No.9808449. 10.1155/2021/9808449 |
14 | ROOPALI, KUMAR R. Energy efficient dynamic cluster head and routing path selection strategy for WBANs[J]. Wireless Personal Communications, 2020, 113(1):33-58. 10.1007/s11277-020-07177-6 |
15 | WAJGI D, THAKUR N V. Load balancing based approach to improve lifetime of wireless sensor network[J]. International Journal of Wireless and Mobile Networks, 2012, 4(4): 155-167. 10.5121/ijwmn.2012.4411 |
16 | GATTANI V S, JAFRI S M H. Data collection using score based load balancing algorithm in wireless sensor networks[C]// Proceedings of the 2016 International Conference on Computing Technologies and Intelligent Data Engineering. Piscataway: IEEE, 2016: 1-3. 10.1109/icctide.2016.7725323 |
17 | SHARMA S K, WANG X. Live data analytics with collaborative edge and cloud processing in wireless IoT networks[J]. IEEE Access, 2017, 5: 4621-4635. 10.1109/access.2017.2682640 |
18 | FAN C, LU Y, LENG X, et al. Data classification processing method for the Power IoT based on cloud-side collaborative architecture[C]// Proceedings of the IEEE 9th Joint International Information Technology and Artificial Intelligence Conference. Piscataway: IEEE, 2020: 684-687. 10.1109/itaic49862.2020.9339138 |
19 | LUO A, CHEN Z, YUAN J, et al. Analysis and processing of power distribution data based on edge computing[C]// Proceedings of the IEEE 6th International Conference on Computer and Communication Systems. Piscataway: IEEE, 2021: 12-16. 10.1109/icccs52626.2021.9449107 |
20 | LI S, LAN T, BALASUBRAMANIAN B, et al. Pushing collaborative data deduplication to the network edge: an optimization framework and system design[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(4): 2110-2122. 10.1109/tnse.2022.3155357 |
21 | APARNA R, SANJAY RAJ R, BANDOPADHYAY S, et al. BlockDrive: a deduplication framework for cloud using edge-level blockchain[C]// Proceedings of the 2021 International Conference on Communication Information and Computing Technology. Piscataway: IEEE, 2021: 1-6. 10.1109/iccict50803.2021.9510039 |
22 | NGUYEN M T, RAHNAVARD N. Cluster-based energy-efficient data collection in wireless sensor networks utilizing compressive sensing[C]// Proceedings of the 2013 IEEE Military Communications Conference. Piscataway: IEEE, 2013: 1708-1713. 10.1109/milcom.2013.289 |
23 | HUI H, ZHOU C, XU S, et al. A novel secure data transmission scheme in industrial internet of things[J]. China Communications, 2020, 17(1): 73-88. 10.23919/jcc.2020.01.006 |
24 | ZHANG Y, WANG P, FANG L, et al. Secure transmission of compressed sampling data using edge clouds[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6641-6651. 10.1109/tii.2020.2966511 |
25 | CHATTERJEE A, GUPTA U, CHINNAKOTLA M K, et al. Understanding emotions in text using deep learning and big data[J]. Computers in Human Behavior, 2019, 93:309-317. 10.1016/j.chb.2018.12.029 |
26 | CHEN Z, HU J, MIN G, et al. Towards accurate prediction for high-dimensional and highly-variable cloud workloads with deep learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(4):923-934. 10.1109/tpds.2019.2953745 |
27 | TAO Y, XU P, JIN H. Secure data sharing and search for cloud-edge-collaborative storage[J]. IEEE Access, 2020, 8: 15963-15972. 10.1109/access.2019.2962600 |
28 | LIU J, MAO Y, ZHANG J, et al. Delay-optimal computation task scheduling for mobile-edge computing systems[C]// Proceedings of the 2016 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2016:1451-1455. 10.1109/isit.2016.7541539 |
29 | XU X, LI Y, HUANG T, et al. An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks[J]. Journal of Network and Computer Applications, 2019, 133: 75-85. 10.1016/j.jnca.2019.02.008 |
30 | XU F, XIE Y, SUN Y, et al. Two-stage computing offloading algorithm in cloud-edge collaborative scenarios based on game theory[J]. Computers and Electrical Engineering, 2022, 97: No.107624. 10.1016/j.compeleceng.2021.107624 |
31 | LYU X, TIAN H, JIANG L, et al. Selective offloading in mobile edge computing for the green internet of things[J]. IEEE Network, 2018, 32(1): 54-60. 10.1109/mnet.2018.1700101 |
32 | LI A, LI L, YI S. Computation offloading strategy for IoT using improved particle swarm algorithm in edge computing[J]. Wireless Communications and Mobile Computing, 2022, 2022: No.9319136. 10.1155/2022/9319136 |
33 | NING Z, DONG P, KONG X, et al. A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things[J]. IEEE Internet of Things Journal, 2019, 6(3): 4804-4814. 10.1109/jiot.2018.2868616 |
34 | QIU X, LIU L, CHEN W, et al. Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8050-8062. 10.1109/tvt.2019.2924015 |
35 | ALAM M G R, HASSAN M M, UDDIN M Z, et al. Autonomic computation offloading in mobile edge for IoT applications[J]. Future Generation Computer Systems, 2019, 90: 149-157. 10.1016/j.future.2018.07.050 |
36 | LI C, SUN H, CHEN Y, et al. Edge cloud resource expansion and shrinkage based on workload for minimizing the cost[J]. Future Generation Computer Systems, 2019, 101: 327-340. 10.1016/j.future.2019.05.026 |
37 | ZHAO T, ZHOU S, GUO X, et al. A cooperative scheduling scheme of local cloud and Internet cloud for delay-aware mobile cloud computing[C]// Proceedings of the 2015 IEEE Globecom Workshops. Piscataway: IEEE, 2015:1-6. 10.1109/glocomw.2015.7414063 |
38 | ZHU Z, PENG J, GU X, et al. Fair resource allocation for system throughput maximization in mobile edge computing[J]. IEEE Access, 2018, 6: 5332-5340. 10.1109/access.2018.2790963 |
39 | WANG Z, LV T, CHANG Z. Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing[J]. Computer Networks, 2022, 205: No.108732. 10.1016/j.comnet.2021.108732 |
40 | ZHU T, ZHOU W, YE D, et al. Resource allocation in IoT edge computing via concurrent federated reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(2): 1414-1426. 10.1109/jiot.2021.3086910 |
41 | WANG D, QIN H, SONG B, et al. Resource allocation in information-centric wireless networking with D2D-enabled MEC: a deep reinforcement learning approach[J]. IEEE Access, 2019, 7: 114935-114944. 10.1109/access.2019.2935545 |
42 | WANG H, YANG X, SHI Y, et al. A proximal iteratively reweighted approach for efficient network sparsification[J]. IEEE Transactions on Computers, 2022, 71(1): 185-196. 10.1109/tc.2020.3044142 |
43 | PENG H, WU J, CHEN S, et al. Collaborative channel pruning for deep networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 5113-5122. |
44 | HE Y, LIU P, WANG Z, et al. Filter pruning via geometric median for deep convolutional neural networks acceleration[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4335-4344. 10.1109/cvpr.2019.00447 |
45 | LI T, LI J, LIU Z, et al. Few sample knowledge distillation for efficient network compression[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14627-14635. 10.1109/cvpr42600.2020.01465 |
46 | HAN S, MAO H, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding[EB/OL]. (2016-02-15) [2022-05-15].. 10.1609/aaai.v35i9.16950 |
47 | CHEN W, WILSON J T, TYREE S, et al. Compressing neural networks with the hashing trick[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 2285-2294. 10.1145/2939672.2939839 |
48 | DETTMERS T. 8-bit approximations for parallelism in deep learning[EB/OL]. (2016-02-19) [2022-2-19].. |
49 | ZHOU A, YAO A, GUO Y, et al. Incremental network quantization: Towards lossless CNNs with low-precision weights[EB/OL]. (2017-08-25) [2022-08-25].. 10.48550/arXiv.1702.03044 |
50 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09) [2022-03-11].. |
51 | MENG Z, LI J, ZHAO Y, et al. Conditional teacher-student learning[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2019: 6445-6449. 10.1109/icassp.2019.8683438 |
52 | MIRZADEH S I, FARAJTABAR M, LI A, et al. Improved knowledge distillation via teacher assistant[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 5191-5198. 10.1609/aaai.v34i04.5963 |
53 | ZHAO Z, BARIJOUGH K M, GERSTLAUER A. DeepThings: distributed adaptive deep learning inference on resource-constrained IoT edge clusters[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(11): 2348-2359. 10.1109/tcad.2018.2858384 |
54 | PARK E, KIM D, KIM S, et al. Big/little deep neural network for ultra low power inference[C]// Proceedings of the 2015 International Conference on Hardware/Software Codesign and System Synthesis. Piscataway: IEEE, 2015: 124-132. 10.1109/codesisss.2015.7331375 |
55 | TAYLOR B, MARCO V S, WOLFF W, et al. Adaptive deep learning model selection on embedded systems[J]. ACM SIGPLAN Notices, 2018, 53(6): 31-43. 10.1145/3299710.3211336 |
56 | TEERAPITTAYANON S, McDANEL B, KUNG H T. BranchyNet: fast inference via early exiting from deep neural networks[C]// Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2016: 2464-2469. 10.1109/icpr.2016.7900006 |
57 | YAN H, YU P, LONG D. Study on deep unsupervised learning optimization algorithm based on cloud computing[C]// Proceedings of the 2019 International Conference on Intelligent Transportation, Big Data and Smart City. Piscataway: IEEE, 2019: 679-681. 10.1109/icitbs.2019.00168 |
58 | SENHAJI K, RAMCHOUN H, ETTAOUIL M. Training feedforward neural network via multiobjective optimization model using non-smooth L1/2 regularization[J]. Neurocomputing, 2020, 410: 1-11. 10.1016/j.neucom.2020.05.066 |
59 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
60 | MILLS J, HU J, MIN G. Multi-task federated learning for personalised deep neural networks in edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(3): 630-641. 10.1109/tpds.2021.3098467 |
61 | REIJONEN J, OPSENICA M, MORABITO R, et al. Regression training using model parallelism in a distributed cloud[C]// Proceedings of the IEEE 17th International Conference on Dependable, Autonomic and Secure Computing/ IEEE 17th International Conference on Pervasive Intelligence and Computing/ IEEE 5th International Conference on Cloud and Big Data Computing/ IEEE 4th Cyber Science and Technology Congress. Piscataway: IEEE, 2019: 741-747. 10.1109/dasc/picom/cbdcom/cyberscitech.2019.00139 |
62 | XU Z, YU F, XIONG J, et al. Helios: heterogeneity-aware federated learning with dynamically balanced collaboration[C]// Proceedings of the 58th ACM/IEEE Design Automation Conference. Piscataway: IEEE, 2021: 997-1002. 10.1109/dac18074.2021.9586241 |
63 | KANG J, XIONG Z, NIVATO D, et al. Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019, 6(6): 10700-10714. 10.1109/jiot.2019.2940820 |
64 | PEREIRA FERREIRA A, SINNOTT R. A performance evaluation of containers running on managed kubernetes services[C]// Proceedings of the 2019 IEEE International Conference on Cloud Computing Technology and Science. Piscataway: IEEE, 2019: 199-208. 10.1109/cloudcom.2019.00038 |
65 | XIONG Y, SUN Y, XING L, et al. Extend cloud to edge with kubeedge[C]// Proceedings of the 3rd ACM/IEEE Symposium on Edge Computing. Piscataway: IEEE, 2018: 373-377. 10.1109/sec.2018.00048 |
[1] | 徐月梅, 胡玲, 赵佳艺, 杜宛泽, 王文清. 大语言模型的技术应用前景与风险挑战[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1655-1662. |
[2] | 魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1393-1400. |
[3] | 柴汶泽, 范菁, 孙书魁, 梁一鸣, 刘竟锋. 深度度量学习综述[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 2995-3010. |
[4] | 陈彤, 位纪伟, 何仕远, 宋井宽, 杨阳. 基于自适应攻击强度的对抗训练方法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 94-100. |
[5] | 叶盛, 王菁, 辛建峰, 王桂玲, 郭陈虹. 云边环境下微服务组合系统的动态演化方法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1696-1704. |
[6] | 林尚静, 马冀, 庄琲, 李月颖, 李子怡, 李铁, 田锦. 基于联邦学习的无线通信流量预测[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1900-1909. |
[7] | 崔剑, 麻开朗, 孙钰, 王豆, 周君良. 面向加密流量分类的深度可解释方法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1151-1159. |
[8] | 魏佳璇, 杜世康, 于志轩, 张瑞生. 图像分类中的白盒对抗攻击技术综述[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2732-2741. |
[9] | 李昆鹏, 张鹏程, 上官宏, 王燕玲, 杨婕, 桂志国. 基于卷积神经网络的时频域CT重建算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1308-1316. |
[10] | 刘子辰, 李小娟, 韦伟. 基于循环神经网络的专利价格自动评估[J]. 计算机应用, 2021, 41(9): 2532-2538. |
[11] | 郭棉, 张锦友. 移动边缘计算环境中面向机器学习的计算迁移策略[J]. 计算机应用, 2021, 41(9): 2639-2645. |
[12] | 张效伟, 江大伟, 陈珂, 陈刚. 关系数据库中聚合代数约束的高效发现算法——AAC-Hunter[J]. 计算机应用, 2021, 41(3): 636-642. |
[13] | 时永鹏, 张俊杰, 夏玉杰, 高雅, 张尚伟. 基于NOMA的5G超密网计算迁移与资源分配策略[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3319-3324. |
[14] | 李恬, 张树美, 赵俊莉. 即时战略游戏的智能流场寻路算法设计与实现[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 602-607. |
[15] | 朱霖, 宁芊, 雷印杰, 陈炳才. 基于遗传算法选优的集成手段与时序卷积网络的涡扇发动机剩余寿命预测[J]. 计算机应用, 2020, 40(12): 3534-3540. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||