《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (11): 3632-3640.DOI: 10.11772/j.issn.1001-9081.2022101605
所属专题: 前沿与综合应用
温祥西1,2, 彭娅婷1,2, 毕可心3, 衡宇铭1,2, 吴明功1,2()
收稿日期:
2022-10-26
修回日期:
2023-01-03
接受日期:
2023-01-09
发布日期:
2023-04-12
出版日期:
2023-11-10
通讯作者:
吴明功
作者简介:
温祥西(1984—),男,江苏连云港人,副教授,博士,主要研究方向:空管自动化基金资助:
Xiangxi WEN1,2, Yating PENG1,2, Kexin BI3, Yuming HENG1,2, Minggong WU1,2()
Received:
2022-10-26
Revised:
2023-01-03
Accepted:
2023-01-09
Online:
2023-04-12
Published:
2023-11-10
Contact:
Minggong WU
About author:
WEN Xiangxi, born in 1984, Ph. D., associate professor. His research interests include air traffic control automation.Supported by:
摘要:
针对空中交通系统运行周期性和时变性的特点,结合复杂网络理论和模糊最小二乘支持向量机(LSSVM),提出一种基于最优样本集在线模糊最小二乘支持向量机(OTSOF-LSSVM)的飞行冲突网络态势预测方法。首先,基于三维的速度障碍法构建飞行冲突网络模型,并根据航空器的位置、航向和速度判断冲突;其次,分析飞行冲突网络拓扑指标的演化时间序列,得到与预测时刻在时间和距离上相关的样本组成最优样本集;最后,采用在线模糊LSSVM训练得到预测模型,并在模型更新过程中通过分块矩阵思想简化更新过程,提高算法效率。实验结果表明,所提方法能够快速、准确地预测空中态势,为管制员掌握空中交通的发展情况提供参考,并辅助进行冲突的预先调配。
中图分类号:
温祥西, 彭娅婷, 毕可心, 衡宇铭, 吴明功. 基于最优样本集在线模糊最小二乘支持向量机的飞行冲突网络态势预测[J]. 计算机应用, 2023, 43(11): 3632-3640.
Xiangxi WEN, Yating PENG, Kexin BI, Yuming HENG, Minggong WU. Situation prediction of flight conflict network based on online fuzzy least squares support vector machine with optimal training set[J]. Journal of Computer Applications, 2023, 43(11): 3632-3640.
演化次数 | 集聚系数 | 平均路径长度 | 鲁棒性 | 网络效率 |
---|---|---|---|---|
1 | 0.456 | 0.085 | 0.998 | 0.136 |
2 | 0.414 | 0.091 | 1.058 | 0.142 |
3 | 0.478 | 0.086 | 0.987 | 0.145 |
4 | 0.438 | 0.080 | 0.920 | 0.142 |
5 | 0.331 | 0.082 | 0.929 | 0.133 |
6 | 0.326 | 0.075 | 0.923 | 0.113 |
0.346 | 0.065 | 0.902 | 0.089 | |
︙ | ︙ | ︙ | ︙ | ︙ |
1 998 | 0.374 | 0.054 | 0.789 | 0.084 |
1 999 | 0.366 | 0.052 | 0.780 | 0.084 |
2 000 | 0.380 | 0.053 | 0.813 | 0.081 |
表1 网络指标时间序列
Tab. 1 Time series of network indicators
演化次数 | 集聚系数 | 平均路径长度 | 鲁棒性 | 网络效率 |
---|---|---|---|---|
1 | 0.456 | 0.085 | 0.998 | 0.136 |
2 | 0.414 | 0.091 | 1.058 | 0.142 |
3 | 0.478 | 0.086 | 0.987 | 0.145 |
4 | 0.438 | 0.080 | 0.920 | 0.142 |
5 | 0.331 | 0.082 | 0.929 | 0.133 |
6 | 0.326 | 0.075 | 0.923 | 0.113 |
0.346 | 0.065 | 0.902 | 0.089 | |
︙ | ︙ | ︙ | ︙ | ︙ |
1 998 | 0.374 | 0.054 | 0.789 | 0.084 |
1 999 | 0.366 | 0.052 | 0.780 | 0.084 |
2 000 | 0.380 | 0.053 | 0.813 | 0.081 |
样本序列 | 嵌入维 | 时间延迟/s | 最大Lyapunov指数 |
---|---|---|---|
集聚系数 | 3 | 11 | 0.499 |
平均路径长度 | 4 | 13 | 0.309 |
鲁棒性 | 3 | 17 | 0.211 |
网络效率 | 4 | 9 | 0.342 |
表2 各时间序列的最大Lyapunov指数
Tab. 2 Maximum Lyapunov exponents for each time series
样本序列 | 嵌入维 | 时间延迟/s | 最大Lyapunov指数 |
---|---|---|---|
集聚系数 | 3 | 11 | 0.499 |
平均路径长度 | 4 | 13 | 0.309 |
鲁棒性 | 3 | 17 | 0.211 |
网络效率 | 4 | 9 | 0.342 |
数据集序号 | 空域大小/km3 | 航空 器数 | 演化规则 | 数据集 样本数 | ||
---|---|---|---|---|---|---|
进入 概率/% | 间隔 时间/s | 改变高度 概率/% | ||||
1 | 100×100×0.6 | 50 | 60 | 8 | 30 | 3 000 |
2 | 120×120×0.3 | 55 | 50 | 10 | 40 | 2 500 |
3 | 150×150×0.6 | 80 | 40 | 10 | 20 | 3 000 |
表3 数据集生成规则
Tab. 3 Dataset generation rules
数据集序号 | 空域大小/km3 | 航空 器数 | 演化规则 | 数据集 样本数 | ||
---|---|---|---|---|---|---|
进入 概率/% | 间隔 时间/s | 改变高度 概率/% | ||||
1 | 100×100×0.6 | 50 | 60 | 8 | 30 | 3 000 |
2 | 120×120×0.3 | 55 | 50 | 10 | 40 | 2 500 |
3 | 150×150×0.6 | 80 | 40 | 10 | 20 | 3 000 |
1 | LIN Y, ZHANG J W, LIU H. Deep learning based short-term air traffic flow prediction considering temporal-spatial correlation[J]. Aerospace Science and Technology, 2019, 93: No.105113. 10.1016/j.ast.2019.04.021 |
2 | GUI G, ZHOU Z, WANG J, et al. Machine learning aided air traffic flow analysis based on aviation big data[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 4817-4826. 10.1109/tvt.2020.2981959 |
3 | ZHANG Z, ZHANG A, SUN C, et al. Research on air traffic flow forecast based on ELM non-iterative algorithm[J]. Mobile Networks and Applications, 2021, 26(1): 425-439. 10.1007/s11036-020-01679-0 |
4 | VERDONK GALLEGO C E, GÓMEZ COMENDADOR V F, AMARO CARMONA M A, et al. A machine learning approach to air traffic interdependency modelling and its application to trajectory prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 256-386. 10.1016/j.trc.2019.08.015 |
5 | PANG Y, ZHAO X, YAN H, et al. Data-driven trajectory prediction with weather uncertainties: a Bayesian deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: No.103326. 10.1016/j.trc.2021.103326 |
6 | 王春政,胡明华,杨磊,等. 空中交通延误预测研究综述[J]. 系统工程与电子技术, 2022, 44(3):863-874. 10.12305/j.issn.1001-506X.2022.03.19 |
WANG C Z, HU M H, YANG L, et al. Review on air traffic delay prediction[J]. Systems Engineering and Electronics, 2022, 44(3): 863-874. 10.12305/j.issn.1001-506X.2022.03.19 | |
7 | 吴仁彪,赵婷,屈景怡. 基于深度SE-DenseNet的航班延误预测模型[J]. 电子与信息学报, 2019, 41(6):1510-1517. 10.11999/JEIT180644 |
WU R B, ZHAO T, QU J Y. Flight delay prediction model based on deep SE-DenseNet[J]. Journal of Electronics and Information, 2019, 41(6):1510-1517. 10.11999/JEIT180644 | |
8 | 吴仁彪,赵娅倩,屈景怡,等. 基于CBAM-CondenseNet的航班延误波及预测模型[J]. 电子与信息学报, 2021, 43(1):187-195. 10.11999/JEIT190794 |
WU R B, ZHAO Y Q, QU J Y, et al. Flight delay propagation prediction model based on CBAM-CondenseNet[J]. Journal of Electronics and Information, 2021, 43(1): 187-195. 10.11999/JEIT190794 | |
9 | 刘继新,曾逍宇,尹旻嘉,等. 基于累积Logistic回归模型的管制员应激程度预测[J]. 重庆交通大学学报(自然科学版), 2019, 38(3):97-102, 115. 10.3969/j.issn.1674-0696.2019.03.15 |
LIU J X, ZENG X Y, YIN M J, et al. Stress level prediction of controller based on cumulative logistic regression model[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(3): 97-102, 115. 10.3969/j.issn.1674-0696.2019.03.15 | |
10 | 王洁宁,张钰涵,冀姗姗. 基于马尔科夫蒙特卡罗的管制员警觉概率预测[J]. 安全与环境学报, 2020, 20(4):1412-1420. 10.13637/j.issn.1009-6094.2019.0832 |
WANG J N, ZHANG Y H, JI S S. Probability prediction of the controller’s status-in-situ alertness based on Markov chain Monte Carlo[J]. Journal of Safety and Environment, 2020, 20(4): 1412-1420. 10.13637/j.issn.1009-6094.2019.0832 | |
11 | 王岩韬,刘宏,唐建勋,等. 动态预测技术在航班运行风险中的应用[J]. 控制与决策, 2019, 34(9):1946-1954. 10.13195/j.kzyjc.2018.0108 |
WANG Y T, LIU H, TANG J X, et al. Dynamic prediction technology in the application of flight operation risk[J]. Control and Decision, 2019, 34(9): 1946-1954. 10.13195/j.kzyjc.2018.0108 | |
12 | 王岩韬,李景良,谷润平. 基于多变量混沌时间序列的航班运行风险预测模型[J]. 工程科学学报, 2020, 42(12):1664-1673. |
WANG Y T, LI J L, GU R P. Flight operation risk prediction model based on the multivariate chaotic time series[J]. Journal of Engineering Science, 2020, 42(12): 1664-1673. | |
13 | 付凯,夏靖波,申健. 基于复杂网络拓扑性质的网络态势预测方法[J]. 华中科技大学学报(自然科学版), 2018, 46(1):42-48. 10.13245/j.hust.180109 |
FU K, XIA J B, SHEN J. Network situation prediction method based on topological properties of complex network[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(1): 42-48. 10.13245/j.hust.180109 | |
14 | SAÂDAOUI F, SAADAOUI H, RABBOUCH H. Hybrid feedforward ANN with NLS-based regression curve fitting for US air traffic forecasting[J]. Neural Computing and Applications, 2020, 32(14): 10073-10085. 10.1007/s00521-019-04539-5 |
15 | 王超,朱明,赵元棣. 基于改进加权一阶局域法的空中交通流量预测模型[J]. 西南交通大学学报, 2018, 53(1):206-213. 10.3969/j.issn.0258-2724.2018.01.025 |
WANG C, ZHU M, ZHAO Y D. Air traffic flow prediction model based on improved adding-weighted one-rank local-region method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213. 10.3969/j.issn.0258-2724.2018.01.025 | |
16 | 李昂,聂党民,温祥西,等. 管制-飞行状态相依网络演化过程研究[J].航空学报, 2021, 42(9): No.324726. 10.12305/j.issn.1001-506X.2021.05.16 |
LI A, NIE D M, WEN X X, et al. Evolution process of control-aircraft state dependent network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): No.324726. 10.12305/j.issn.1001-506X.2021.05.16 | |
17 | 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1):32-42. |
ZHANG X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1):32-42. | |
18 | 丁世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1):2-10. 10.3969/j.issn.1001-0548.2011.01.001 |
DING S F, QI B J, TAN H Y. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10. 10.3969/j.issn.1001-0548.2011.01.001 | |
19 | 刘双印,徐龙琴,李道亮,等. 基于时间相似数据的支持向量机水质溶解氧在线预测[J]. 农业工程学报, 2014, 30(3):155-162. 10.3969/j.issn.1002-6819.2014.03.021 |
LIU S Y, XU L Q, LI D L, et al. Online prediction of dissolved oxygen in water quality based on support vector machine with time series similar data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3) :155-162. 10.3969/j.issn.1002-6819.2014.03.021 | |
20 | 田中大,高宪文,石彤. 用于混沌时间序列预测的组合核函数最小二乘支持向量机[J]. 物理学报, 2014, 63(16): No.160508. 10.7498/aps.63.160508 |
TIAN Z D, GAO X W, SHI T. Combination kernel least squares support vector machine for chaotic time series forecasting[J]. Acta Physica Sinica, 2014, 63(16): No.160508. 10.7498/aps.63.160508 | |
21 | 陆锦军,王执铨. 基于混沌特性的网络流量预测[J]. 南京航空航天大学学报, 2006, 38(2):217-221. 10.3969/j.issn.1005-2615.2006.02.018 |
LU J J, WANG Z Q. Prediction of network traffic flow based on chaos characteristics[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2006, 38(2): 217-221. 10.3969/j.issn.1005-2615.2006.02.018 | |
22 | 胡瑜,陈涛. 基于C-C算法的混沌吸引子的相空间重构技术[J]. 电子测量与仪器学报, 2012, 26(5):425-430. 10.3724/sp.j.1187.2012.00425 |
HU Y, CHEN T. Phase-space reconstruction technology of chaotic attractor based on C-C method[J]. Journal of Electronic Measurement and Instrumentation, 2012, 26(5): 425-430. 10.3724/sp.j.1187.2012.00425 | |
23 | 林玲,陈福集,谢加良,等. 基于改进灰狼优化支持向量回归的网络舆情预测[J]. 系统工程理论与实践, 2022, 42(2):487-498. 10.12011/SETP2020-1500 |
LIN L, CHEN F J, XIE J L, et al. Prediction of network public opinion prediction based on improved grey wolf optimization support vector regression[J]. Systems Engineering Theory and Practice, 2022, 42(2): 487-498. 10.12011/SETP2020-1500 |
[1] | 黄杰, 武瑞梓, 李均利. 高效的自适应复杂网络鲁棒性优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3530-3539. |
[2] | 王中钰, 钱晓东. 基于改进期望最大化算法的供应链网络边连接规则优化[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3386-3395. |
[3] | 周琳, 肖玉芝, 刘鹏, 秦有鹏. 基于节点多关系的社团挖掘算法及其应用[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1489-1496. |
[4] | 李鹏, 王世林, 陈光武, 闫光辉. 基于改进的局部结构熵复杂网络重要节点挖掘[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1109-1114. |
[5] | 李占利, 李颖, 罗香玉, 罗颖骁. 基于Monte-Carlo迭代求解策略的局部社区发现算法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 104-110. |
[6] | 孟昱煜, 郭静. 信息熵改进主成分分析模型的链路预测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2823-2829. |
[7] | 张仲华, 赵福媛, 郭钧枫, 赵高长. 柯西自适应回溯搜索与最小二乘支持向量机的集成预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1829-1836. |
[8] | 郝志刚, 秦丽. 基于多属性综合评价的食品安全标准引用网络重要节点发现方法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1178-1185. |
[9] | 胡军, 许正康, 刘立, 钟福金. 融合多粒度社区信息的网络嵌入方法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 663-670. |
[10] | 陈广福, 王海波, 连雁平. 基于高阶自包含协同过滤的有向网络链路预测[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3060-3068. |
[11] | 蔡彪, 李蕊岑, 吴媛媛. 相似性特征对链路预测的影响与增强[J]. 计算机应用, 2021, 41(9): 2569-2577. |
[12] | 李亚芳, 梁烨, 冯韦玮, 祖宝开, 康玉健. 基于社区优化的深度网络嵌入方法[J]. 计算机应用, 2021, 41(7): 1956-1963. |
[13] | 唐延强, 李成海, 宋亚飞. 基于改进粒子群优化和极限学习机的网络安全态势预测[J]. 计算机应用, 2021, 41(3): 768-773. |
[14] | 李萍, 汪芬, 陈祺东, 孙俊. 求解多目标社区发现问题的离散化随机漂移粒子群优化算法[J]. 计算机应用, 2021, 41(3): 803-811. |
[15] | 陆荣秀, 陈明明, 杨辉, 朱建勇. 基于溶液图像时序特征的元素组分含量动态监测系统[J]. 计算机应用, 2021, 41(10): 3075-3081. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||