1 |
ASHKBOOS S, HUANG L, DRYDEN N, et al. ENS-10: a dataset for post-processing ensemble weather forecast [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 21974-21987.
|
2 |
MATSUBARA Y, SAKURAI Y, VAN PANHUIS W G, et al. FUNNEL: automatic mining of spatially coevolving epidemics [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 105-114.
|
3 |
DEB C, ZHANG F, YANG J, et al. A review on time series forecasting techniques for building energy consumption [J]. Renewable and Sustainable Energy Reviews, 2017, 74: 902-924.
|
4 |
胡鹤轩,隋华超,胡强,等. 基于图注意力网络与双阶注意力机制的径流预报模型[J]. 计算机应用, 2022, 42(5): 1607-1615.
|
|
HU H X, SUI H C, HU Q, et al. Runoff forecast model based on graph attention network and dual-stage attention mechanism [J]. Journal of Computer Applications, 2022, 42(5): 1607-1615.
|
5 |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [EB/OL]. (2018-02-22) [2022-10-02]..
|
6 |
夏进,王正群,朱世明. 基于时间序列分解的交通流量预测模型[J]. 计算机应用, 2023, 43(4): 1129-1135.
|
|
XIA J, WANG Z Q, ZHU S M. Traffic flow prediction model based on time series decomposition[J]. Journal of Computer Applications, 2023, 43(4): 1129-1135.
|
7 |
STAVROGLOU S K, PANTELOUS A A, STANLEY H E, et al. Hidden interactions in financial markets [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(22): 10646-10651.
|
8 |
李晓杰,崔超然,宋广乐,等. 基于时序超图卷积神经网络的股票趋势预测方法[J]. 计算机应用, 2022, 42(3): 797-803.
|
|
LI X J, CUI C R, SONG G L, et al. Stock trend prediction method based on temporal hypergraph convolutional neural network [J]. Journal of Computer Applications, 2022, 42(3): 797-803.
|
9 |
LAI G, CHANG W C, YANG Y, et al. Modeling long- and short-term temporal patterns with deep neural networks [C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 95-104.
|
10 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
11 |
ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 11106-11115.
|
12 |
CIRSTEA R G, GUO C, YANG B, et al. Triformer: triangular, variable-specific attentions for long sequence multivariate time series forecasting [C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2022: 1994-2001.
|
13 |
ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed Transformer for long-term series forecasting [C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 27268-27286.
|
14 |
WU H, XU J, WANG J, et al. Autoformer: decomposition Transformers with auto-correlation for long-term series forecasting[C]// Proceedings of the 35th Conference on Neural Information Processing Systems.Red Hook: Curran Associates Inc., 2021: 22419-22430.
|
15 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
16 |
RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training [EB/OL]. (2018-06-11) [2023-02-10]. .
|
17 |
WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2019: 1907-1913.
|
18 |
ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 1234-1241.
|
19 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. (2016-05-19) [2022-11-02]. .
|
20 |
SHIH S Y, SUN F K, LEE H Y. Temporal pattern attention for multivariate time series forecasting [J]. Machine Learning, 2019, 108(8/9): 1421-1441.
|
21 |
LIN H, GAO Z, XU Y, et al. Conditional local convolution for spatio-temporal meteorological forecasting [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 7470-7478.
|
22 |
WU Z, PAN S, LONG G, et al. Connecting the dots: multivariate time series forecasting with graph neural networks [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 753-763.
|
23 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
24 |
BA J L, KIROS J R, HINTON G E. Layer normalization [EB/OL]. (2016-07-21) [2022-12-03]. .
|
25 |
SAKOE H, CHIBA S. Dynamic programming algorithm optimization for spoken word recognition [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43-49.
|
26 |
SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83-98.
|
27 |
GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
|
28 |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 8026-8037.
|
29 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2022-09-13]. .
|
30 |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
|