1 |
DEUTSCH D, JOZSA R. Rapid solution of problems by quantum computation [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1992, 439(1907): 553-558.
|
2 |
EGGER D J, GUTIÉRREZ R G, MESTRE J C, et al. Credit risk analysis using quantum computers [J]. IEEE Transactions on Computers, 2021, 70(12): 2136-2145.
|
3 |
PIRANDOLA S, ANDERSEN U L, BANCHI L, et al. Advances in quantum cryptography [J]. Advances in Optics and Photonics, 2020, 12(4): 1012-1236.
|
4 |
KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets [J]. Nature, 2017, 549: 242-246.
|
5 |
SVORE K, GELLER A, TROYER M, et al. Q# : enabling scalable quantum computing and development with a high-level DSL[C]// Proceedings of the Real World Domain Specific Languages Workshop 2018. New York: ACM, 2018: 1-10.
|
6 |
ALEKSANDROWICZ G, ALEXANDER T, BARKOUTSOS P, et al. Qiskit: an open-source framework for quantum computing (0.7.2) [DS/OL]. [2023-09-27]. .
|
7 |
GREEN A S, LUMSDAINE P L F, ROSS N J, et al. Quipper: a scalable quantum programming language [J]. ACM SIGPLAN Notices, 2013, 48(6): 333-342.
|
8 |
MindSpore Quantum Developers. MindSpore Quantum (0.8.0) [DS/OL]. (2023-02-13) [2023-09-27]. .
|
9 |
DOU M, ZOU T, FANG Y, et al. QPanda: high-performance quantum computing framework for multiple application scenarios [EB/OL]. (2022-12-29) [2023-05-27]. .
|
10 |
CHARETON C, BARDIN S, LEE D, et al. Formal methods for quantum programs: a survey [EB/OL]. (2021-09-14) [2024-01-03]. .
|
11 |
LEWIS M, SOUDJANI S, ZULIANI P. Formal verification of quantum programs: theory, tools, and challenges [J]. ACM Transactions on Quantum Computing, 2023, 5(1): 1-35.
|
12 |
HIETALA K, RAND R, S-H HUNG, et al. Proving quantum programs correct [EB/OL]. (2021-07-13) [2023-09-27]. .
|
13 |
PAYKIN J, RAND R, ZDANCEWIC S. QWIRE: a core language for quantum circuits [C]// Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. New York: ACM, 2017: 846-858.
|
14 |
ZHOU L, BARTHE G, P-Y STRUB, et al. CoqQ: foundational verification of quantum programs [J]. Proceedings of the ACM on Programming Languages, 2023, 7(POPL): 833-865.
|
15 |
LIU J, ZHAN B, WANG S, et al. Formal verification of quantum algorithms using quantum Hoare logic [C]// Proceedings of the 31st International Conference on Computer Aided Verification. Cham: Springer, 2019: 187-207.
|
16 |
CHARETON C, BARDIN S, BOBOT F, et al. An automated deductive verification framework for circuit-building quantum programs [C]// Proceedings of the 30th European Symposium on Programming: Programming Languages and Systems. Cham: Springer, 2021: 148-177.
|
17 |
BORDG A, LACHNITT H, HE Y. Certified quantum computation in Isabelle/HOL [J]. Journal of Automated Reasoning, 2021, 65(5): 691-709.
|
18 |
HIETALA K, RAND R, S-H HUNG, et al. A verified optimizer for quantum circuits [J]. Proceedings of the ACM on Programming Languages, 2021, 5(POPL): Article No. 37.
|
19 |
LEHMANN A, CALDWELL B, RAND R. VyZX: a vision for verifying the ZX Calculus [EB/OL]. (2022-05-11) [2024-01-03]. .
|
20 |
NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information: 10th Anniversary Edition [M]. Cambridge: Cambridge University Press, 2010: 80-97.
|
21 |
南京航空航天大学. 一种应用于量子计算的特殊矩阵和向量的形式化方法: CN202310648914.8 [P]. 2023-06-02.
|
|
Nanjing University of Aeronautics and Astronautics. A formal method for special matrices and vectors with applications to quantum computing: CN202310648914.8 [P]. 2023-06-02.
|
22 |
Developers Coq. Coq manual(8.18.0) [DS/OL]. [2024-01-03] .
|
23 |
NIPKOW T, WENZEL M, PAULSON L C. Isabelle/HOL: A Proof Assistant for Higher-Order Logic [M]. Berlin: Springer, 2002: 9-63.
|
24 |
J-C FILLIÂTRE, PASKEVICH A. Why3: where programs meet provers [C]// Proceedings of the 22nd European Symposium on Programming: Programming Languages and Systems. Cham: Springer, 2013: 125-128.
|
25 |
RAND R. Formally verified quantum programming [D]. Philadelphia: University of Pennsylvania, 2018: 80-85.
|
26 |
KAYE P, LAFLAMME R, MOSCA M. An Introduction to Quantum Computing [M]. New York: Oxford University Press, 2016: 80-82.
|
27 |
DEUTSCH D. Quantum theory, the Church-Turing principle and the universal quantum computer [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1985, 400(1818): 97-117.
|
28 |
YING M. Floyd-Hoare logic for quantum programs [J]. ACM Transactions on Programming Languages and Systems, 2012, 33(6): Article No. 19.
|
29 |
GROVER L K. A fast quantum mechanical algorithm for database search [C]// Proceedings of the 28th Annual ACM Symposium on Theory of Computing. New York: ACM, 1996: 212-219.
|
30 |
MAHBOUBI A, TASSI E. Mathematical Components (1.0.2) [DS/OL]. (2022-09-28) [2023-06-04]. .
|
31 |
LOMONT C. The hidden subgroup problem: review and open problems [EB/OL]. (2004-11-05) [2024-01-03]. .
|
32 |
HARROW A W, HASSIDIM A, LLOYD S. Quantum algorithm for linear systems of equations [J]. Physical Review Letters, 2009, 103(15): 150502.
|
33 |
INQWIRE Developers. INQWIRE QuantumLib(1.1.0) [DS/OL]. (2022-08-01) [2023-08-12]. .
|
34 |
SHI Z P, XIE G J, CHEN G. CoqMatrix: formal matrix library with multiple models in Coq [J]. Journal of Systems Architecture, 2023, 143: 102986.
|
35 |
BOLDO S, LELAY C, MELQUIOND G. Coquelicot: a user-friendly library of real analysis for Coq [J]. Mathematics in Computer Science, 2015, 9: 41-62.
|
36 |
BLANQUI F, KOPROWSKI A. CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates [J]. Mathematical Structures in Computer Science, 2011, 21(4): 827-859.
|
37 |
马振威,陈钢.基于Coq记录的矩阵形式化方法[J].计算机科学,2019,46(7):139-145.
|
|
MA Z W, CHEN G. Matrix formalization based on Coq record [J]. Computer Science, 2019, 46(7): 139-145.
|
38 |
麻莹莹,马振威,陈钢.基于Coq的分块矩阵运算的形式化[J].软件学报,2021,32(6):1882-1909.
|
|
MA Y Y, MA Z W, CHEN G. Formalization of operations of block matrix based on Coq [J].Journal of Software, 2021, 32(6): 1882-1909.
|
39 |
DIRAC P A M. A new notation for quantum mechanics [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1939, 35(3): 416-418.
|
40 |
NAKAHARA M, OHMI T. Quantum Computing: From Linear Algebra to Physical Realizations [M]. Boca Raton: CRC Press, 2008: 38-39.
|
41 |
CROSS A, JAVADI-ABHARI A, ALEXANDER T, et al. OpenQASM 3: a broader and deeper quantum assembly language [J]. ACM Transactions on Quantum Computing, 2022, 3(3): Article No. 12.
|
42 |
LI C-K, ROBERTS R, YIN X. Decomposition of unitary matrices and quantum gates [J]. International Journal of Quantum Information, 2013, 11(1): 1350015.
|
43 |
CLEVE R, EKERT A, MACCHIAVELLO C, et al. Quantum algorithms revisited [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1997, 454(1969): 339-354.
|
44 |
BRASSARD G, HØYER P, MOSCA M, et al. Quantum amplitude amplification and estimation [EB/OL]. (2000-05-15) [2023-11-03]. .
|
45 |
SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.
|