| 1 | 郑远攀,李广阳,李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12): 20-36.  10.3778/j.issn.1002-8331.1903-0031 | 
																													
																						|  | ZHENG Y P, LI G Y, LI Y. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications, 2019, 55(12): 20-36.  10.3778/j.issn.1002-8331.1903-0031 | 
																													
																						| 2 | PURWINS H, LI B, VIRTANEN T. Deep learning for audio signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(2): 206-219.  10.1109/jstsp.2019.2908700 | 
																													
																						| 3 | DAI H, KHALIL E B, ZHANG Y, et al. Learning combinatorial optimization algorithms over graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6351-6361. | 
																													
																						| 4 | JIANG W. Applications of deep learning in stock market prediction: recent progress[J]. Expert Systems with Applications, 2021, 184: No.115537.  10.1016/j.eswa.2021.115537 | 
																													
																						| 5 | 张晓旭,高振涛,吴磊,等. 基于混合量子-经典神经网络模型的股价预测[J]. 电子科技大学学报, 2022, 51(1):16-23. | 
																													
																						|  | ZHANG X X, GAO Z T, WU L, et al. Stock price prediction based on a hybrid quantum-classical neural network model[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(1):16-23. | 
																													
																						| 6 | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. (2015-03-20) [2022-07-23].. | 
																													
																						| 7 | MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2574-2582.  10.1109/cvpr.2016.282 | 
																													
																						| 8 | PAPERNOT N, McDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]// Proceedings of the 2016 IEEE European Symposium on Security and Privacy. Piscataway: IEEE, 2016: 372-387.  10.1109/eurosp.2016.36 | 
																													
																						| 9 | CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]// Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017: 39-57.  10.1109/sp.2017.49 | 
																													
																						| 10 | MIYATO T, DAI A M, GOODFELLOW I. Adversarial training methods for semi-supervised text classification[EB/OL]. (2021-11-16) [2022-07-23].. | 
																													
																						| 11 | ATHALYE A, CARLINI N, WAGNER D. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 274-283.  10.48550/arXiv.1802.00420 | 
																													
																						| 12 | LIAO F, LIANG M, DONG Y, et al. Defense against adversarial attacks using high-level representation guided denoiser[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: Piscataway: IEEE, 2018: 1778-1787.  10.1109/cvpr.2018.00191 | 
																													
																						| 13 | PAPERNOT N, McDANIEL P, WU X, et al. Distillation as a defense to adversarial perturbations against deep neural networks[C]// Proceedings of the 2016 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2016: 582-597.  10.1109/sp.2016.41 | 
																													
																						| 14 | XU W, EVANS D, QI Y. Feature squeezing: detecting adversarial examples in deep neural networks[C]// Proceedings of the Network and Distributed System Security Symposium 2018. Reston, VA: Internet Society, 2018: No.23198.  10.14722/ndss.2018.23198 | 
																													
																						| 15 | FEINMAN R, CURTIN R R, SHINTRE S, et al. Detecting adversarial samples from artifacts[EB/OL]. (2017-11-15) [2022-07-23].. | 
																													
																						| 16 | PANG T, DU C, ZHU J. Robust deep learning via reverse cross-entropy training and thresholding test[EB/OL]. (2017-06-02) [2022-07-23].. | 
																													
																						| 17 | MA X, LI B, WANG Y, et al. Characterizing adversarial subspaces using local intrinsic dimensionality[EB/OL]. (2018-03-14) [2022-07-23].. | 
																													
																						| 18 | 阮越,陈汉武,刘志昊,等. 量子主成分分析算法[J]. 计算机学报, 2014, 37(3): 666-676. | 
																													
																						|  | RUAN Y, CHEN H W, LIU Z H, et al. Quantum principal component analysis algorithm[J]. Chinese Journal of Computers, 2014, 37(3): 666-676. | 
																													
																						| 19 | CONG I, CHOI S, LUKIN M D. Quantum convolutional neural networks[J]. Nature Physics, 2019, 15(12): 1273-1278.  10.1038/s41567-019-0648-8 | 
																													
																						| 20 | AMSALEG L, BAILEY J, BARBE D, et al. The vulnerability of learning to adversarial perturbation increases with intrinsic dimensionality[C]// Proceedings of the 2017 IEEE Workshop on Information Forensics and Security. Piscataway: IEEE, 2017: 1-6.  10.1109/wifs.2017.8267651 |