| 1 | BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL]. (2019-02-01) [2023-06-13].. | 
																													
																						| 2 | TANG T W, KUO W H, LAN J H, et al. Anomaly detection neural network with dual auto-encoders GAN and its industrial inspection applications[J]. Sensors, 2020, 20(12): No.3336. | 
																													
																						| 3 | AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]// Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11363. Cham: Springer, 2019: 622-637. | 
																													
																						| 4 | SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// Proceedings of the 2017 International Conference on Information Processing in Medical Imaging, LNCS 10265. Cham: Springer, 2017: 146-157. | 
																													
																						| 5 | ZENATI H, FOO C S, LECOUAT B, et al. Efficient GAN-based anomaly detection[EB/OL]. [2023-06-12].. | 
																													
																						| 6 | WHEELER B J, KARIMI H A. A semantically driven self-supervised algorithm for detecting anomalies in image sets[J]. Computer Vision and Image Understanding, 2021, 213: No.103279. | 
																													
																						| 7 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. | 
																													
																						| 8 | ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14298-14308. | 
																													
																						| 9 | COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences[EB/OL]. [2023-09-10].. | 
																													
																						| 10 | DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]// Proceedings of the 2021 International Conference on Pattern Recognition, LNCS 12664. Cham: Springer, 2021: 475-489. | 
																													
																						| 11 | HYUN J, KIM S, JEON G, et al. ReConPatch: contrastive patch representation learning for industrial anomaly detection[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 2041-2050. | 
																													
																						| 12 | BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD — a comprehensive real-world dataset for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9584-9592. | 
																													
																						| 13 | ZAVRTANIK V, KRISTAN M, SKOČAJ D. DRÆM — a discriminatively trained reconstruction embedding for surface anomaly detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8310-8319. | 
																													
																						| 14 | LI C L, SOHN K, YOON J, et al. CutPaste: self-supervised learning for anomaly detection and localization[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9659-9669. | 
																													
																						| 15 | SONG J W, KONG K, PARK Y I, et al. AnoSeg: anomaly segmentation network using self-supervised learning[EB/OL]. [2023-08-10].. | 
																													
																						| 16 | LIU Z, ZHOU Y, XU Y, et al. SimpleNet: a simple network for image anomaly detection and localization[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 20402-20411. | 
																													
																						| 17 | YANG M, WU P, FENG H. MemSeg: a semi-supervised method for image surface defect detection using differences and commonalities[J]. Engineering Applications of Artificial Intelligence, 2023, 119: No.105835. | 
																													
																						| 18 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. | 
																													
																						| 19 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. | 
																													
																						| 20 | SINHA S, ZHANG H, GOYAL A, et al. Small-GAN: speeding up GAN training using core-sets[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9005-9015. | 
																													
																						| 21 | PERLIN K. An image synthesizer[J]. ACM SIGGRAPH Computer Graphics, 1985, 19(3): 287-296. | 
																													
																						| 22 | ZHAO R, QIAN B, ZHANG X, et al. Rethinking Dice loss for medical image segmentation[C]// Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 851-860. | 
																													
																						| 23 | CIMPOI M, MAJI S, KOKKINOS I, et al. Describing textures in the wild[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3606-3613. | 
																													
																						| 24 | FU H, CHENG J, XU Y, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1597-1605. | 
																													
																						| 25 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. | 
																													
																						| 26 | YAO H, ZHU D L, JIANG B, et al. Negative log likelihood ratio loss for deep neural network classification[C]// Proceedings of the 2019 Future Technologies Conference, AISC 1069. Cham: Springer, 2020: 276-282. | 
																													
																						| 27 | YI J, YOON S. Patch SVDD: patch-level SVDD for anomaly detection and segmentation[C]// Proceedings of the 2020 Asian Conference on Computer Vision, LNCS 12627. Cham: Springer, 2021: 375-390. | 
																													
																						| 28 | WANG G, HAN S, DING E, et al. Student-teacher feature pyramid matching for anomaly detection[C]// Proceedings of the 2021 British Machine Vision Conference. Durham: BMVA Press, 2021: No.1273. | 
																													
																						| 29 | BATZNER K, HECKLER L, KÖNIG R. EfficientAD: accurate visual anomaly detection at millisecond-level latencies[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 127-137. |