《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (10): 3039-3046.DOI: 10.11772/j.issn.1001-9081.2023101452
李林昊1,2,3, 张晓倩1, 董瑶1,2,3, 王旭1,2,3, 董永峰1,2,3()
收稿日期:
2023-10-30
修回日期:
2024-01-20
接受日期:
2024-01-26
发布日期:
2024-10-15
出版日期:
2024-10-10
通讯作者:
董永峰
作者简介:
李林昊(1989—),男,山东威海人,副教授,博士,CCF会员,主要研究方向:机器学习、知识推理、计算机视觉基金资助:
Linhao LI1,2,3, Xiaoqian ZHANG1, Yao DONG1,2,3, Xu WANG1,2,3, Yongfeng DONG1,2,3()
Received:
2023-10-30
Revised:
2024-01-20
Accepted:
2024-01-26
Online:
2024-10-15
Published:
2024-10-10
Contact:
Yongfeng DONG
About author:
LI Linhao, born in 1989, Ph. D., associate professor. His research interests include machine learning, knowledge inference, computer vision.Supported by:
摘要:
针对知识追踪(KT)模型没有充分考虑学生间差异、挖掘知识状态与习题的高度匹配等问题,提出一种双层网络架构——基于个性化学习和深层次细化的知识追踪(PLDRKT)。首先,利用增强注意力机制得到习题的深层次细化表示;其次,从不同学生对习题的难度感知和学习收益方面对初步知识状态进行个性化建模;最后,利用初步知识状态和深层习题表示得到学生的深层次知识状态并预测他们的未来答题情况。将PLDRKT模型与基于对抗训练的增强知识追踪(ATKT)和集成知识追踪(ENKT)等7种模型在Statics2011、ASSIST09、ASSIST15和ASSIST17数据集上进行对比实验。实验结果显示,PLDRKT模型的曲线下面积(AUC)均有增加,在4个数据集上与不考虑习题嵌入的最优基线模型相比,分别增加了0.61、1.32、5.29和0.19个百分点,可见PLDRKT模型可以较好地建模学生知识状态并预测回答。
中图分类号:
李林昊, 张晓倩, 董瑶, 王旭, 董永峰. 基于个性化学习和深层次细化的知识追踪[J]. 计算机应用, 2024, 44(10): 3039-3046.
Linhao LI, Xiaoqian ZHANG, Yao DONG, Xu WANG, Yongfeng DONG. Knowledge tracing based on personalized learning and deep refinement[J]. Journal of Computer Applications, 2024, 44(10): 3039-3046.
数据集 | 学生数 | 知识概念数 | 习题数 | 回答交互数 |
---|---|---|---|---|
Statics2011 | 333 | 1 223 | — | 189 297 |
ASSIST09 | 4 151 | 110 | 16 891 | 325 637 |
ASSIST15 | 19 840 | 100 | — | 683 801 |
ASSIST17 | 1 709 | 102 | 3 162 | 942 816 |
表1 4个数据集的统计数据
Tab. 1 Statistics of four datasets
数据集 | 学生数 | 知识概念数 | 习题数 | 回答交互数 |
---|---|---|---|---|
Statics2011 | 333 | 1 223 | — | 189 297 |
ASSIST09 | 4 151 | 110 | 16 891 | 325 637 |
ASSIST15 | 19 840 | 100 | — | 683 801 |
ASSIST17 | 1 709 | 102 | 3 162 | 942 816 |
模型 | AUC | ||||
---|---|---|---|---|---|
Statics2011 | ASSIST09 | ASSIST15 | ASSIST17 | ||
不考虑习题嵌入 | DRKT-S | 0.832 9±0.005 5 | 0.824 7±0.002 9 | 0.822 0±0.004 2 | 0.729 2±0.004 9 |
DRKT-H | 0.836 0±0.004 0 | 0.839 5±0.003 9 | 0.841 0±0.003 0 | 0.749 8±0.007 1 | |
PLDRKT | 0.838 6±0.004 5 | 0.851 8±0.003 5 | 0.857 4±0.008 7 | 0.769 1±0.004 4 | |
考虑习题嵌入 | DRKT-Sq | — | 0.828 9±0.003 6 | — | 0.782 3±0.000 5 |
DRKT-Hq | — | 0.846 7±0.003 3 | — | 0.800 7±0.005 9 | |
PLDRKTq | — | 0.855 6±0.003 5 | — | 0.804 7±0.004 9 |
表2 消融实验结果
Tab. 2 Results of ablation experiments
模型 | AUC | ||||
---|---|---|---|---|---|
Statics2011 | ASSIST09 | ASSIST15 | ASSIST17 | ||
不考虑习题嵌入 | DRKT-S | 0.832 9±0.005 5 | 0.824 7±0.002 9 | 0.822 0±0.004 2 | 0.729 2±0.004 9 |
DRKT-H | 0.836 0±0.004 0 | 0.839 5±0.003 9 | 0.841 0±0.003 0 | 0.749 8±0.007 1 | |
PLDRKT | 0.838 6±0.004 5 | 0.851 8±0.003 5 | 0.857 4±0.008 7 | 0.769 1±0.004 4 | |
考虑习题嵌入 | DRKT-Sq | — | 0.828 9±0.003 6 | — | 0.782 3±0.000 5 |
DRKT-Hq | — | 0.846 7±0.003 3 | — | 0.800 7±0.005 9 | |
PLDRKTq | — | 0.855 6±0.003 5 | — | 0.804 7±0.004 9 |
模型 | AUC | ||||
---|---|---|---|---|---|
Statics2011 | ASSIST09 | ASSIST15 | ASSIST17 | ||
不考虑习题嵌入 | DKT | 0.823 3±0.003 9 | 0.817 0±0.004 3 | 0.731 0±0.001 8 | 0.726 3±0.005 4 |
DKT+ | 0.830 1±0.003 9 | 0.802 4±0.004 5 | 0.731 3±0.001 8 | 0.712 4±0.004 1 | |
DKVMN | 0.819 5±0.004 1 | 0.809 3±0.004 4 | 0.727 6±0.001 7 | 0.707 3±0.004 4 | |
SAKT | 0.802 9±0.003 2 | 0.752 0±0.004 0 | 0.721 2±0.002 0 | 0.656 9±0.002 7 | |
AKT-NR | 0.826 5±0.004 9 | 0.816 9±0.004 5 | 0.782 8±0.001 9 | 0.728 2±0.003 7 | |
ATKT | 0.832 5±0.004 3 | 0.824 4±0.003 2 | 0.804 5±0.009 7 | 0.729 7±0.005 1 | |
ENKTc | 0.831 4±0.005 4 | 0.838 6±0.004 1 | 0.732 8±0.002 1 | 0.767 2±0.003 1 | |
PLDRKT | 0.838 6±0.004 5 | 0.851 8±0.003 5 | 0.857 4±0.008 7 | 0.769 1±0.004 4 | |
考虑习题嵌入 | AKT-R | — | 0.834 6±0.003 6 | — | 0.770 2±0.002 6 |
ENKTq | — | 0.839 4±0.004 5 | — | 0.774 4±0.003 3 | |
PLDRKTq | — | 0.855 6±0.003 5 | — | 0.804 7±0.004 9 |
表3 4个数据集上的预测性能
Tab. 3 Prediction performance on four datasets
模型 | AUC | ||||
---|---|---|---|---|---|
Statics2011 | ASSIST09 | ASSIST15 | ASSIST17 | ||
不考虑习题嵌入 | DKT | 0.823 3±0.003 9 | 0.817 0±0.004 3 | 0.731 0±0.001 8 | 0.726 3±0.005 4 |
DKT+ | 0.830 1±0.003 9 | 0.802 4±0.004 5 | 0.731 3±0.001 8 | 0.712 4±0.004 1 | |
DKVMN | 0.819 5±0.004 1 | 0.809 3±0.004 4 | 0.727 6±0.001 7 | 0.707 3±0.004 4 | |
SAKT | 0.802 9±0.003 2 | 0.752 0±0.004 0 | 0.721 2±0.002 0 | 0.656 9±0.002 7 | |
AKT-NR | 0.826 5±0.004 9 | 0.816 9±0.004 5 | 0.782 8±0.001 9 | 0.728 2±0.003 7 | |
ATKT | 0.832 5±0.004 3 | 0.824 4±0.003 2 | 0.804 5±0.009 7 | 0.729 7±0.005 1 | |
ENKTc | 0.831 4±0.005 4 | 0.838 6±0.004 1 | 0.732 8±0.002 1 | 0.767 2±0.003 1 | |
PLDRKT | 0.838 6±0.004 5 | 0.851 8±0.003 5 | 0.857 4±0.008 7 | 0.769 1±0.004 4 | |
考虑习题嵌入 | AKT-R | — | 0.834 6±0.003 6 | — | 0.770 2±0.002 6 |
ENKTq | — | 0.839 4±0.004 5 | — | 0.774 4±0.003 3 | |
PLDRKTq | — | 0.855 6±0.003 5 | — | 0.804 7±0.004 9 |
1 | CARBONARA A, DATTA A, SINHA A, et al. Incentivizing peer grading in MOOCs: an audit game approach[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 497-503. |
2 | ANDERSON J R, BOYLE C F, REISER B J. Intelligent tutoring systems[J]. Science, 1985, 228(4698): 456-462. |
3 | PIECH C, SPENCER J, HUANG J, et al. Deep knowledge tracing[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015: 505-513. |
4 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
5 | ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 765-774. |
6 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
7 | PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing[C]// Proceedings of the 12th International Conference on Educational Data Mining. [S.l.]: International Educational Data Mining Society, 2019: 384-389. |
8 | SHEN S, LIU Q, CHEN E, et al. Convolutional knowledge tracing: modeling individualization in student learning process[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1857-1860. |
9 | SHEN S, HUANG Z, LIU Q, et al. Assessing student’s dynamic knowledge state by exploring the question difficulty effect[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 427-437. |
10 | CORBETT A T, ANDERSON J R. Knowledge tracing: modeling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1994, 4(4): 253-278. |
11 | YUDELSON M V, KOEDINGER K R, GORDON G J. Individualized Bayesian knowledge tracing models[C]// Proceedings of the 2013 International Conference, LNCS 7926. Cham: Springer, 2013: 171-180. |
12 | ZHANG K, YAO Y. A three learning states Bayesian knowledge tracing model[J]. Knowledge-Based Systems, 2018, 148: 189-201. |
13 | DiBELLO L V, ROUSSOS L A, STOUT W. Review of cognitively diagnostic assessment and a summary of psychometric models[J]. Handbook of Statistics, 2006, 26: 979-1030. |
14 | YEUNG C K, YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regularization[C]// Proceedings of the 5th Annual ACM Conference on Learning at Scale. New York: ACM, 2018: No.5. |
15 | ZHANG Q, CHEN Z Y, LALWANI N, et al. Modifying deep knowledge tracing for multi-step problems[C]// Proceedings of the 15th International Conference on Educational Data Mining. [S.l.]: International Educational Data Mining Society, 2022: 1-5. |
16 | 邵小萌,张猛. 融合注意力机制的时间卷积知识追踪模型[J]. 计算机应用, 2023, 43(2): 343-348. |
SHAO X M, ZHANG M. Temporal convolutional knowledge tracing model with attention mechanism[J]. Journal of Computer Applications, 2023, 43(2): 343-348. | |
17 | HE L, TANG J, LI X, et al. Multi-type factors representation learning for deep learning-based knowledge tracing[J]. World Wide Web, 2022, 25(3): 1343-1372. |
18 | ABDELRAHMAN G, WANG Q. Knowledge tracing with sequential key-value memory networks[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 175-184. |
19 | SUN X, ZHAO X, LI B, et al. Dynamic key-value memory networks with rich features for knowledge tracing[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8239-8245. |
20 | GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2330-2339. |
21 | PANDEY S, SRIVASTAVA J. RKT: relation-aware self-attention for knowledge tracing[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1205-1214. |
22 | LEE W, CHUN J, LEE Y, et al. Contrastive learning for knowledge tracing[C]// Proceedings of the 2022 ACM Web Conference. New York: ACM, 2022: 2330-2338. |
23 | GUO X, HUANG Z J, GAO J, et al. Enhancing knowledge tracing via adversarial training[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 367-375. |
24 | SU Y, LIU Q, LIU Q, et al. Exercise-enhanced sequential modeling for student performance prediction[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 2435-2443. |
25 | LIU Q, HUANG Z, YIN Y, et al. EKT: exercise-aware knowledge tracing for student performance prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(1): 100-115. |
26 | SHEN S, LIU Q, CHEN E, et al. Learning process-consistent knowledge tracing[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1452-1460. |
27 | WEI L, LI B, LI Y, et al. Time interval aware self-attention approach for knowledge tracing[J]. Computers and Electrical Engineering, 2022, 102: No.108179. |
28 | WANG C, MA W, ZHANG M, et al. Temporal cross-effects in knowledge tracing[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 517-525. |
29 | LONG T, LIU Y, SHEN J, et al. Tracing knowledge state with individual cognition and acquisition estimation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 173-182. |
30 | LONG T, QIN J, SHEN J, et al. Improving knowledge tracing with collaborative information[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 599-607. |
31 | 郑浩东,马华,谢颖超,等. 融合遗忘因素与记忆门的图神经网络知识追踪模型[J]. 计算机应用, 2023, 43(9):2747-2752. |
ZHENG H D, MA H, XIE Y C, et al. Knowledge tracing model based on graph neural network blending with forgetting factors and memory gate[J]. Journal of Computer Applications, 2023, 43(9): 2747-2752. | |
32 | SUN J, ZOU R, LIANG R, et al. Ensemble knowledge tracing: modeling interactions in learning process[J]. Expert Systems with Applications, 2022, 207: No.117680. |
33 | CONTI M, DI PIETRO R, MANCINI L V, et al. Distributed data source verification in wireless sensor networks[J]. Information Fusion, 2009, 10(4): 342-353. |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[3] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[4] | 杨航, 李汪根, 张根生, 王志格, 开新. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2719-2725. |
[5] | 杨兴耀, 陈羽, 于炯, 张祖莲, 陈嘉颖, 王东晓. 结合自我特征和对比学习的推荐模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2704-2710. |
[6] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[7] | 任烈弘, 黄铝文, 田旭, 段飞. 基于DFT的频率敏感双分支Transformer多变量长时间序列预测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2739-2746. |
[8] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[9] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[10] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[11] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[12] | 陈彤, 杨丰玉, 熊宇, 严荭, 邱福星. 基于多尺度频率通道注意力融合的声纹库构建方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2407-2413. |
[13] | 汪才钦, 周渝皓, 张顺香, 王琰慧, 王小龙. 基于语境增强的新能源汽车投诉文本方面-观点对抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2430-2436. |
[14] | 赵浩宇, 于自强, 陈晓萌, 陈国祥, 朱慧, 李博涵. 支持关键词搜索的top-K条最优路线查询问题[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2455-2465. |
[15] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||