《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (11): 3609-3620.DOI: 10.11772/j.issn.1001-9081.2024111614
• 网络空间安全 • 上一篇
王昊1, 王金伟1,2, 程鑫3(
), 张家伟4, 吴昊5, 罗向阳5, 马宾6
收稿日期:2024-11-13
修回日期:2024-12-06
接受日期:2024-12-20
发布日期:2025-01-03
出版日期:2025-11-10
通讯作者:
程鑫
作者简介:王昊(1995—),男,江苏连云港人,讲师,博士,主要研究方向:信息安全、JPEG压缩取证基金资助:
Hao WANG1, Jinwei WANG1,2, Xin CHENG3(
), Jiawei ZHANG4, Hao WU5, Xiangyang LUO5, Bin MA6
Received:2024-11-13
Revised:2024-12-06
Accepted:2024-12-20
Online:2025-01-03
Published:2025-11-10
Contact:
Xin CHENG
About author:WANG Hao, born in 1995, Ph. D., lecturer. His research interests include information security, JPEG compression forensics.Supported by:摘要:
JPEG(Joint Photographic Experts Group)压缩是当前应用最为广泛的图像压缩标准之一,它涉及诸如图像操作链取证、图像源取证、隐写与隐写分析和JPEG反取证等多种取证场景和安全模型。研究者针对JPEG图像特性开展了诸多有关JPEG重压缩取证的研究,发现JPEG重压缩取证不仅为图像取证提供先验知识,也可以直接应用到取证场景中。因此,对彩色图像JPEG重压缩取证进行综述。首先,介绍了重压缩取证的研究背景,并将重压缩取证分成了非对齐、对齐异步和对齐同步3种重压缩问题;其次,详细介绍了JPEG压缩的流程、收敛误差、误差图像、算法评价指标等用于重压缩取证的基础知识;再次,对每类问题的现有方法进行了详细的介绍和梳理。此外,由于图像隐写、对抗样本等都涉及关于JPEG重压缩的鲁棒性研究,因此,列举了JPEG重压缩特征特性在上述领域中的应用,并选取了常见的算法进行对比,总结归纳它们的优缺点。最后,展望了JPEG重压缩取证中有待进一步解决的问题和发展趋势。
中图分类号:
王昊, 王金伟, 程鑫, 张家伟, 吴昊, 罗向阳, 马宾. 彩色图像JPEG重压缩取证综述[J]. 计算机应用, 2025, 45(11): 3609-3620.
Hao WANG, Jinwei WANG, Xin CHENG, Jiawei ZHANG, Hao WU, Xiangyang LUO, Bin MA. Review of JPEG recompression forensics for color images[J]. Journal of Computer Applications, 2025, 45(11): 3609-3620.
| 算法 | UCID数据集上的准确率/% | NRCS数据集上的准确率/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 50 | 文献[ | 84.51 | 99.96 | 85.14 | 99.91 | 99.98 | 99.99 | ||||
| 文献[ | 89.01 | 96.86 | 99.54 | 99.70 | 87.79 | 96.58 | 99.69 | 99.81 | |||
| 文献[ | 81.97 | 80.23 | 85.31 | 90.95 | 89.70 | 81.60 | 81.10 | 85.61 | 93.13 | 85.77 | |
| 文献[ | 51.61 | 99.95 | 99.99 | 50.82 | |||||||
| 文献[ | 52.86 | 99.33 | 98.96 | 99.71 | 50.76 | 98.99 | 99.11 | 99.37 | |||
| 文献[ | 50.33 | 92.57 | 94.95 | 98.33 | 99.84 | 51.45 | 96.79 | 95.16 | 97.67 | 99.26 | |
| 60 | 文献[ | 99.77 | 84.42 | 99.99 | 99.59 | 84.7 | 99.99 | 99.98 | 99.98 | ||
| 文献[ | 82.67 | 88.82 | 99.56 | 99.65 | 81.62 | 87.73 | 99.79 | 99.92 | |||
| 文献[ | 68.31 | 82.18 | 81.50 | 81.40 | 86.07 | 62.10 | 81.40 | 82.07 | 89.72 | 82.28 | |
| 文献[ | 51.61 | 99.97 | 50.87 | ||||||||
| 文献[ | 98.53 | 50.06 | 98.71 | 99.97 | 99.99 | 98.48 | 50.79 | 97.63 | 99.48 | ||
| 文献[ | 96.02 | 52.01 | 94.36 | 96.46 | 99.57 | 93.33 | 52.80 | 95.93 | 98.84 | 99.26 | |
| 70 | 文献[ | 99.92 | 99.79 | 86.40 | 99.83 | 99.90 | 85.23 | ||||
| 文献[ | 84.25 | 82.73 | 99.31 | 98.92 | 85.17 | 82.87 | 99.46 | 99.13 | |||
| 文献[ | 61.23 | 64.29 | 82.34 | 94.46 | 73.21 | 61.62 | 61.33 | 83.40 | 94.10 | 70.98 | |
| 文献[ | 51.22 | 50.89 | 99.97 | ||||||||
| 文献[ | 98.91 | 99.21 | 53.44 | 99.89 | 98.79 | 99.41 | 50.74 | 99.12 | |||
| 文献[ | 95.12 | 90.83 | 51.04 | 98.9 | 99.91 | 90.88 | 89.53 | 50.26 | 97.25 | 99.54 | |
| 80 | 文献[ | 99.57 | 99.91 | 99.99 | 98.43 | 99.60 | 99.93 | 98.56 | 99.99 | ||
| 文献[ | 75.42 | 82.93 | 82.64 | 99.33 | 73.20 | 77.95 | 81.09 | 99.86 | |||
| 文献[ | 56.37 | 63.27 | 58.15 | 96.11 | 76.04 | 54.05 | 64.69 | 58.83 | 95.33 | 81.30 | |
| 文献[ | 59.31 | 99.98 | 99.96 | 58.81 | |||||||
| 文献[ | 98.65 | 99.01 | 99.86 | 57.83 | 99.84 | 98.37 | 98.69 | 99.48 | 58.85 | 99.73 | |
| 文献[ | 97.33 | 96.89 | 92.97 | 54.01 | 99.58 | 96.86 | 94.54 | 89.31 | 52.91 | 99.78 | |
| 90 | 文献[ | 96.32 | 99.39 | 98.88 | 99.81 | 98.53 | 96.62 | 99.53 | 98.51 | 99.83 | 98.98 |
| 文献[ | 62.14 | 66.09 | 68.85 | 93.51 | 99.01 | 64.64 | 65.96 | 69.27 | 92.58 | 99.27 | |
| 文献[ | 52.43 | 54.18 | 54.04 | 65.99 | 50.96 | 54.09 | 51.39 | 62.92 | |||
| 文献[ | 97.69 | 76.03 | 76.45 | ||||||||
| 文献[ | 93.21 | 97.88 | 97.44 | 98.86 | 69.54 | 92.54 | 95.98 | 96.75 | 98.46 | 59.90 | |
| 文献[ | 97.63 | 94.23 | 97.49 | 53.22 | 94.34 | 95.28 | 94.65 | 91.51 | 58.66 | ||
表1 UCID和NRCS数据集上的性能对比
Tab. 1 Performance comparison on UCID and NRCS datasets
| 算法 | UCID数据集上的准确率/% | NRCS数据集上的准确率/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 50 | 文献[ | 84.51 | 99.96 | 85.14 | 99.91 | 99.98 | 99.99 | ||||
| 文献[ | 89.01 | 96.86 | 99.54 | 99.70 | 87.79 | 96.58 | 99.69 | 99.81 | |||
| 文献[ | 81.97 | 80.23 | 85.31 | 90.95 | 89.70 | 81.60 | 81.10 | 85.61 | 93.13 | 85.77 | |
| 文献[ | 51.61 | 99.95 | 99.99 | 50.82 | |||||||
| 文献[ | 52.86 | 99.33 | 98.96 | 99.71 | 50.76 | 98.99 | 99.11 | 99.37 | |||
| 文献[ | 50.33 | 92.57 | 94.95 | 98.33 | 99.84 | 51.45 | 96.79 | 95.16 | 97.67 | 99.26 | |
| 60 | 文献[ | 99.77 | 84.42 | 99.99 | 99.59 | 84.7 | 99.99 | 99.98 | 99.98 | ||
| 文献[ | 82.67 | 88.82 | 99.56 | 99.65 | 81.62 | 87.73 | 99.79 | 99.92 | |||
| 文献[ | 68.31 | 82.18 | 81.50 | 81.40 | 86.07 | 62.10 | 81.40 | 82.07 | 89.72 | 82.28 | |
| 文献[ | 51.61 | 99.97 | 50.87 | ||||||||
| 文献[ | 98.53 | 50.06 | 98.71 | 99.97 | 99.99 | 98.48 | 50.79 | 97.63 | 99.48 | ||
| 文献[ | 96.02 | 52.01 | 94.36 | 96.46 | 99.57 | 93.33 | 52.80 | 95.93 | 98.84 | 99.26 | |
| 70 | 文献[ | 99.92 | 99.79 | 86.40 | 99.83 | 99.90 | 85.23 | ||||
| 文献[ | 84.25 | 82.73 | 99.31 | 98.92 | 85.17 | 82.87 | 99.46 | 99.13 | |||
| 文献[ | 61.23 | 64.29 | 82.34 | 94.46 | 73.21 | 61.62 | 61.33 | 83.40 | 94.10 | 70.98 | |
| 文献[ | 51.22 | 50.89 | 99.97 | ||||||||
| 文献[ | 98.91 | 99.21 | 53.44 | 99.89 | 98.79 | 99.41 | 50.74 | 99.12 | |||
| 文献[ | 95.12 | 90.83 | 51.04 | 98.9 | 99.91 | 90.88 | 89.53 | 50.26 | 97.25 | 99.54 | |
| 80 | 文献[ | 99.57 | 99.91 | 99.99 | 98.43 | 99.60 | 99.93 | 98.56 | 99.99 | ||
| 文献[ | 75.42 | 82.93 | 82.64 | 99.33 | 73.20 | 77.95 | 81.09 | 99.86 | |||
| 文献[ | 56.37 | 63.27 | 58.15 | 96.11 | 76.04 | 54.05 | 64.69 | 58.83 | 95.33 | 81.30 | |
| 文献[ | 59.31 | 99.98 | 99.96 | 58.81 | |||||||
| 文献[ | 98.65 | 99.01 | 99.86 | 57.83 | 99.84 | 98.37 | 98.69 | 99.48 | 58.85 | 99.73 | |
| 文献[ | 97.33 | 96.89 | 92.97 | 54.01 | 99.58 | 96.86 | 94.54 | 89.31 | 52.91 | 99.78 | |
| 90 | 文献[ | 96.32 | 99.39 | 98.88 | 99.81 | 98.53 | 96.62 | 99.53 | 98.51 | 99.83 | 98.98 |
| 文献[ | 62.14 | 66.09 | 68.85 | 93.51 | 99.01 | 64.64 | 65.96 | 69.27 | 92.58 | 99.27 | |
| 文献[ | 52.43 | 54.18 | 54.04 | 65.99 | 50.96 | 54.09 | 51.39 | 62.92 | |||
| 文献[ | 97.69 | 76.03 | 76.45 | ||||||||
| 文献[ | 93.21 | 97.88 | 97.44 | 98.86 | 69.54 | 92.54 | 95.98 | 96.75 | 98.46 | 59.90 | |
| 文献[ | 97.63 | 94.23 | 97.49 | 53.22 | 94.34 | 95.28 | 94.65 | 91.51 | 58.66 | ||
| UCID数据集上的准确率/% | NRCS数据集上的准确率/% | |||||||
|---|---|---|---|---|---|---|---|---|
| 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | |
| 50 | 70.94 | 82.91 | 57.86 | 71.57 | 84.14 | 54.58 | ||
| 60 | 74.58 | 84.72 | 62.23 | 74.46 | 84.25 | 59.03 | ||
| 70 | 77.03 | 84.45 | 64.53 | 78.00 | 84.48 | 62.70 | ||
| 80 | 95.52 | 86.03 | 80.01 | 95.47 | 87.23 | 82.57 | ||
| 90 | 98.09 | 91.03 | 78.32 | 98.60 | 93.35 | 76.95 | ||
表2 UCID和NRCS上的灰盒实验结果
Tab. 2 Grey box experimental results on UCID and NRCS datasets
| UCID数据集上的准确率/% | NRCS数据集上的准确率/% | |||||||
|---|---|---|---|---|---|---|---|---|
| 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | |
| 50 | 70.94 | 82.91 | 57.86 | 71.57 | 84.14 | 54.58 | ||
| 60 | 74.58 | 84.72 | 62.23 | 74.46 | 84.25 | 59.03 | ||
| 70 | 77.03 | 84.45 | 64.53 | 78.00 | 84.48 | 62.70 | ||
| 80 | 95.52 | 86.03 | 80.01 | 95.47 | 87.23 | 82.57 | ||
| 90 | 98.09 | 91.03 | 78.32 | 98.60 | 93.35 | 76.95 | ||
| 单压缩和三重压缩的准确率/% | 双压缩和三重压缩的准确率/% | |||||
|---|---|---|---|---|---|---|
| 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | |
| 50 | 82.95 | 80.82 | 63.85 | 53.24 | ||
| 60 | 84.82 | 86.88 | 66.86 | 54.38 | ||
| 70 | 86.33 | 88.51 | 65.31 | 52.83 | ||
| 80 | 97.44 | 93.28 | 70.85 | 58.91 | ||
| 90 | 98.93 | 97.48 | 70.23 | 65.89 | ||
表3 三重压缩取证性能
Tab. 3 Triple compression forensic performance
| 单压缩和三重压缩的准确率/% | 双压缩和三重压缩的准确率/% | |||||
|---|---|---|---|---|---|---|
| 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | |
| 50 | 82.95 | 80.82 | 63.85 | 53.24 | ||
| 60 | 84.82 | 86.88 | 66.86 | 54.38 | ||
| 70 | 86.33 | 88.51 | 65.31 | 52.83 | ||
| 80 | 97.44 | 93.28 | 70.85 | 58.91 | ||
| 90 | 98.93 | 97.48 | 70.23 | 65.89 | ||
| [1] | NIU Y, LI X, ZHAO Y, et al. Detection of double JPEG compression with the same quantization matrix via convergence analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(5): 3279-3290. |
| [2] | LUO W, QU Z, HUANG J, et al. A novel method for detecting cropped and recompressed image block[C]// Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing — Volume 2. Piscataway: IEEE, 2007: 217-220. |
| [3] | CHEN Y L, HSU C T. Image tampering detection by blocking periodicity analysis in JPEG compressed images[C]// Proceedings of the IEEE 10th Workshop on Multimedia Signal Processing. Piscataway: IEEE, 2008: 803-808. |
| [4] | CHEN Y L, HSU C T. Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(2): 396-406. |
| [5] | QU Z, LUO W, HUANG J. A convolutive mixing model for shifted double JPEG compression with application to passive image authentication[C]// Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2008: 1661-1664. |
| [6] | BIANCHI T, PIVA A. Analysis of non-aligned double JPEG artifacts for the localization of image forgeries[C]// Proceedings of the 2011 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2011: 1-6. |
| [7] | BIANCHI T, PIVA A. Detection of nonaligned double JPEG compression based on integer periodicity maps[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 842-848. |
| [8] | TRALIC D, PETROVIC J, GRGIC S. JPEG image tampering detection using blocking artifacts[C]// Proceedings of the 19th International Conference on Systems, Signals and Image Processing. Piscataway: IEEE, 2012: 5-8. |
| [9] | YANG J, ZHU G, WANG J, et al. Detecting non-aligned double JPEG compression based on refined intensity difference and calibration[C]// Proceedings of the 2013 International Workshop on Digital Watermarking, LNCS 8389. Berlin: Springer, 2014: 169-179. |
| [10] | WU L, KONG X, WANG B, et al. Image tampering localization via estimating the non-aligned double JPEG compression[C]// Proceedings of the SPIE 8665, Media Watermarking, Security, and Forensics 2013. Bellingham, WA: SPIE, 2013: No.86650R. |
| [11] | WANG J, HUANG W, LUO X, et al. Non-aligned double JPEG compression detection based on refined Markov features in QDCT domain[J]. Journal of Real-Time Image Processing, 2020, 17(1): 7-16. |
| [12] | WANG J, HUANG W, LUO X, et al. Detecting non-aligned double JPEG compression based on amplitude-angle feature[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17(4): No.138. |
| [13] | WANG Q, ZHANG R. Double JPEG compression forensics based on a convolutional neural network[J]. EURASIP Journal on Information Security, 2016, 2016: No.23. |
| [14] | BARNI M, BONDI L, BONETTINI N, et al. Aligned and non-aligned double JPEG detection using convolutional neural networks[J]. Journal of Visual Communication and Image Representation, 2017, 49: 153-163. |
| [15] | LI B, LUO H, ZHANG H, et al. A multi-branch convolutional neural network for detecting double JPEG compression[EB/OL]. [2024-09-19].. |
| [16] | VERMA V, AGARWAL N, KHANNA N. DCT-domain deep convolutional neural networks for multiple JPEG compression classification[J]. Signal Processing: Image Communication, 2018, 67: 22-33. |
| [17] | ALIPOUR N, BEHRAD A. Semantic segmentation of JPEG blocks using a deep CNN for non-aligned JPEG forgery detection and localization[J]. Multimedia Tools and Applications, 2020, 79(11): 8249-8265. |
| [18] | LUKÁŠ J, FRIDRICH J. Estimation of primary quantization matrix in double compressed JPEG images[EB/OL]. [2024-09-19].. |
| [19] | PEVNY T, RIDRICH J. Detection of double-compression in JPEG images for applications in steganography[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(2): 247-258. |
| [20] | POPESCU A C, FARID H. Statistical tools for digital forensics[C]// Proceedings of the 2004 International Workshop on Information Hiding, LNCS 3200. Berlin: Springer, 2005: 128-147. |
| [21] | FU D, SHI Y Q, SU W. A generalized Benford’s law for JPEG coefficients and its applications in image forensics[C]// Proceedings of the SPIE 6505, Security, Steganography, and Watermarking of Multimedia Contents Ⅸ. Bellingham, WA: SPIE, 2007: No.65051L. |
| [22] | LI B, SHI Y Q, HUANG J. Detecting doubly compressed JPEG images by using mode based first digit features[C]// Proceedings of the IEEE 10th Workshop on Multimedia Signal Processing. Piscataway: IEEE, 2008: 730-735. |
| [23] | DONG L, KONG X, WANG B, et al. Double compression detection based on Markov model of the first digits of DCT coefficients[C]// Proceedings of the 6th International Conference on Image and Graphic. Piscataway: IEEE, 2011: 234-237. |
| [24] | LIU Q, SUNG A H, QIAO M. A method to detect JPEG-based double compression[C]// Proceedings of the 2011 International Symposium on Neural Networks, LNCS 6676. Berlin: Springer, 2011: 466-476. |
| [25] | SHANG S, ZHAO Y, NI R. Double JPEG detection using high order statistic features[C]// Proceedings of the 2016 IEEE International Conference on Digital Signal Processing. Piscataway: IEEE, 2016: 550-554. |
| [26] | LI J, LU W, WENG J, et al. Double JPEG compression detection based on block statistics[J]. Multimedia Tools and Applications, 2018, 77(24): 31895-31910. |
| [27] | TAIMORI A, RAZZAZI F, BEHRAD A, et al. A part-level learning strategy for JPEG image recompression detection[J]. Multimedia Tools and Applications, 2021, 80(8): 12235-12247. |
| [28] | PARK J, CHO D, AHN W, et al. Double JPEG detection in mixed JPEG quality factors using deep convolutional neural network[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11209. Cham: Springer, 2018: 656-672. |
| [29] | ZENG X, FENG G, ZHANG X. Detection of double JPEG compression using modified DenseNet model[J]. Multimedia Tools and Applications, 2019, 78(7): 8183-8196. |
| [30] | DENG C, LI Z, GAO X, et al. Deep multi-scale discriminative networks for double JPEG compression forensics[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.20. |
| [31] | LI B, ZHANG H, LUO H, et al. Detecting double JPEG compression and its related anti-forensic operations with CNN[J]. Multimedia Tools and Applications, 2019, 78(7): 8577-8601. |
| [32] | HUSSAIN I, TAN S, LI B, et al. A novel deep learning framework for double JPEG compression detection of small size blocks[J]. Journal of Visual Communication and Image Representation, 2021, 80: No.103269. |
| [33] | VERMA V, SINGH D, KHANNA N. Block-level double JPEG compression detection for image forgery localization[J]. Multimedia Tools and Applications, 2024, 83(4): 9949-9971. |
| [34] | BI X, YAN W, LIU B, et al. Self-supervised image local forgery detection by JPEG compression trace[C]// Proceedings of the 2023 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 232-240. |
| [35] | HUANG F, HUANG J, SHI Y Q. Detecting double JPEG compression with the same quantization matrix[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(4): 848-856. |
| [36] | LAI S, BÖHME R. Block convergence in repeated transform coding: JPEG-100 forensics, carbon dating, and tamper detection[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2013: 3028-3032. |
| [37] | YANG J, XIE J, ZHU G, et al. An effective method for detecting double JPEG compression with the same quantization matrix[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(11): 1933-1942. |
| [38] | NIU Y, LI X, ZHAO Y, et al. An enhanced approach for detecting double JPEG compression with the same quantization matrix[J]. Signal Processing: Image Communication, 2019, 76: 89-96. |
| [39] | WANG J, WANG H, LI J, et al. Detecting double JPEG compressed color images with the same quantization matrix in spherical coordinates[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(8): 2736-2749. |
| [40] | WANG H, WANG J, LUO X, et al. Detecting aligned double JPEG compressed color image with same quantization matrix based on the stability of image[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 4065-4080. |
| [41] | CHAI X, TAN Y, JIANG W, et al. Detecting aligned double JPEG compression with the same quantization matrix based on Hamming distance and image stability[C]// Proceedings of the 2023 IEEE International Conference on Signal Processing, Communications and Computing. Piscataway: IEEE, 2023: 1-5. |
| [42] | CHAI X, TAN Y, GAN Z, et al. Forgery detection using polynomial fitting in recompressed JPEG images[J]. Signal, Image and Video Processing, 2024, 18(3): 2439-2451. |
| [43] | WANG H, WANG J, ZHANG J, et al. General forensics for aligned double JPEG compression based on the quantization interference[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(6): 5191-5206. |
| [44] | HUANG X, WANG S, LIU G. Detecting double JPEG compression with same quantization matrix based on dense CNN feature[C]// Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 3813-3817. |
| [45] | PENG P, SUN T, JIANG X, et al. Detection of double JPEG compression with the same quantization matrix based on convolutional neural networks[C]// Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2018: 717-721. |
| [46] | WANG H, WANG J, ZHAI J, et al. Detection of triple JPEG compressed color images[J]. IEEE Access, 2019, 7: 113094-113102. |
| [47] | DESHPANDE A U, HARISH A N, SINGH S, et al. Neural network based block-level detection of same quality factor double JPEG compression[C]// Proceedings of the 7th International Conference on Signal Processing and Integrated Networks. Piscataway: IEEE, 2020: 828-833. |
| [48] | 王金伟,胡冰涛,张家伟,等. 基于解压缩模块的JPEG同步重压缩检测[J]. 电子学报, 2023, 51(4): 850-859. |
| WANG J W, HU B T, ZHANG J W, et al. JPEG synchronous double compression detection based on decompression module[J]. Acta Electronica Sinica, 2023, 51(4): 850-859. | |
| [49] | ZHAO X, MENG X, REN R, et al. Detecting double JPEG compressed color images via an improved approach[J]. Computers, Materials and Continua, 2023, 75(1): 1765-1781. |
| [50] | BILLA N R, DAS B P, BISWAL M, et al. CNN based image resizing forensics for double compressed JPEG images[J]. Journal of Information Security and Applications, 2024, 81: No.103693. |
| [51] | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. [2024-04-10].. |
| [52] | CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]// Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017: 39-57. |
| [53] | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. [2024-06-07].. |
| [54] | MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/OL]. [2024-09-19].. |
| [55] | KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[M]// YAMPOLSKIY R V. Artificial intelligence safety and security. New York: Chapman, 2018: 99-112. |
| [56] | XIAO C, LI B, ZHU J Y, et al. Generating adversarial examples with adversarial networks[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2018: 3905-3911. |
| [57] | XU W, EVANS D, QI Y. Feature squeezing: detecting adversarial examples in deep neural networks[C]// Proceedings of the 2018 Annual Network and Distributed Systems Security Symposium. Reston, VA: Internet Society, 2018: 1-15. |
| [58] | MO H, SONG T, CHEN B, et al. Enhancing JPEG steganography using iterative adversarial examples[C]// Proceedings of the 2019 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2019: 1-6. |
| [59] | WANG J, ZHAO J, YIN Q, et al. SmsNet: a new deep convolutional neural network model for adversarial example detection[J]. IEEE Transactions on Multimedia, 2022, 24: 230-244. |
| [60] | TSUNOMORI K, YAMASAKI Y, KURIBAYASHI M, et al. Detection and correction of adversarial examples based on IPEG-compression-derived distortion[C]// Proceedings of the 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2022: 1831-1836. |
| [61] | 赵俊杰,王金伟,吴俊凤.基于多质量因子压缩误差的对抗样本攻击方法识别[J].中国图象图形学报,2023,28(3):850-863. |
| ZHAO J J, WANG J W, WU J F. Adversarial attack method identification model based on multi-factor compression error[J]. Journal of Image and Graphics, 2023, 28(3): 850-863. | |
| [62] | ZHAO J, WU J, ADEKE J M, et al. Detecting high-resolution adversarial images with few-shot deep learning[J]. Remote Sensing, 2023, 15(9): No.2379. |
| [63] | KODOVSKÝ J, FRIDRICH J. Steganalysis of JPEG images using rich models[C]// Proceedings of the SPIE 8303, Media Watermarking, Security, and Forensics 2012. Bellingham, WA: SPIE, 2012: No.83030A. |
| [64] | PEVNY T, FRIDRICH J. Merging Markov and DCT features for multi-class JPEG steganalysis[C]// Proceedings of the SPIE 6505, Security, Steganography, and Watermarking of Multimedia Contents Ⅸ. Bellingham, WA: SPIE, 2007: No.650503. |
| [65] | KODOVSKÝ J, FRIDRICH J. Calibration revisited[C]// Proceedings of the 11th ACM Workshop on Multimedia and Security. New York: ACM, 2009: 63-74. |
| [66] | ZHAO Z, GUAN Q, ZHANG H, et al. Improving the robustness of adaptive steganographic algorithms based on transport channel matching[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(7): 1843-1856. |
| [67] | SHI Y Q, CHEN C, CHEN W, et al. Effect of recompression on attacking JPEG steganographic schemes an experimental study[C]// Proceedings of the 2007 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2007: 1265-1268. |
| [68] | HOLUB V, FRIDRICH J. Low-complexity features for JPEG steganalysis using undecimated DCT[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(2): 219-228. |
| [69] | SONG X, LIU F, YANG C, et al. Steganalysis of adaptive JPEG steganography using 2D Gabor filters[C]// Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2015: 15-23. |
| [70] | ZENG J, TAN S, LI B, et al. Large-scale JPEG image steganalysis using hybrid deep-learning framework[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1200-1214. |
| [71] | XU G. Deep convolutional neural network to detect J-UNIWARD[C]// Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2017: 67-73. |
| [72] | BOROUMAND M, CHEN M, FRIDRICH J. Deep residual network for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1181-1193. |
| [73] | BUTORA J, FRIDRICH J. Reverse JPEG compatibility attack[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1444-1454. |
| [74] | FENG J, WANG Y, CHEN K, et al. An effective steganalysis for robust steganography with repetitive JPEG compression[C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 3084-3088. |
| [75] | GUAN Q, CHEN K, CHEN H, et al. Detecting steganography in JPEG images recompressed with the same quantization matrix[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 6002-6016. |
| [76] | TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural network[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6105-6114. |
| [77] | FU T, CHEN L, GAO Y, et al. DCANet: CNN model with dual-path network and improved coordinate attention for JPEG steganalysis[J]. Multimedia Systems, 2024, 30(4): No.230. |
| [78] | LIU X, LI W, LIN K, et al. Spatial-frequency feature fusion network for lightweight and arbitrary-sized JPEG steganalysis[J]. IEEE Signal Processing Letters, 2024, 31: 2585-2589. |
| [79] | SCHAEFER G, STICH M. UCID: an uncompressed color image database[C]// Proceedings of the SPIE 5307, Storage and Retrieval Methods and Applications for Multimedia 2004. Bellingham, WA: SPIE, 2003: 472-480. |
| [80] | NRCS photo gallery[DS/OL]. [2024-07-21].. |
| [81] | D-T DANG-NGUYEN, PASQUINI C, CONOTTER V, et al. RAISE: a raw images dataset for digital image forensics[C]// Proceedings of the 6th ACM Multimedia Systems Conference. New York: ACM, 2015: 219-224. |
| [1] | 朱秀明 宣国荣 姚秋明 童学锋 施云庆 . 信息取证中图像重采样检测[J]. 计算机应用, 2006, 26(11): 2596-2597. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||