《计算机应用》唯一官方网站 ›› 2026, Vol. 46 ›› Issue (1): 270-279.DOI: 10.11772/j.issn.1001-9081.2024121765
王丽芳1, 任文婧1, 郭晓东2(
), 张荣国1, 胡立华1
收稿日期:2024-12-16
修回日期:2025-03-17
接受日期:2025-03-18
发布日期:2026-01-10
出版日期:2026-01-10
通讯作者:
郭晓东
作者简介:王丽芳(1975—),女,山西和顺人,副教授,博士, CCF会员,主要研究方向:图形图像处理、智能优化基金资助:
Lifang WANG1, Wenjing REN1, Xiaodong GUO2(
), Rongguo ZHANG1, Lihua HU1
Received:2024-12-16
Revised:2025-03-17
Accepted:2025-03-18
Online:2026-01-10
Published:2026-01-10
Contact:
Xiaodong GUO
About author:WANG Lifang, born in 1975, Ph. D., associate professor. Her research interests include image and graphics processing, intelligent optimization.Supported by:摘要:
近些年,把生成对抗网络(GAN)应用于低剂量计算机断层扫描(LDCT)图像降噪取得了显著进展。然而,现有方法存在对复杂噪声分布建模能力不足以及结构细节保留能力有限等问题。因此,提出一种用于LDCT图像降噪的多路特征GAN ——Trident GAN。首先,设计特征引导生成器Trident Uformer,通过在U-Net结构的瓶颈层增加特征聚合注意力(FPA)模块解决U型结构空间分辨率较低的问题;其次,设计多路特征提取子模块Trident Block,并在3个分支中分别引入局部细节增强模块(LDEB)提取细节特征,轻量通道注意力模块(LCAB)增强通道特征,以及空间交互注意力模块(SIAB)获得重要空间特征;在SIAB中采用多级交互式注意力函数和评估机制设计空间上下文注意力机制(SCAM),解决单一注意力受限的问题;最后,设计多特征融合(MFF)模块来在三分支末端进行特征聚合,并对局部细节信息和全局语义信息进行建模,解决不同层次之间细节不连续的问题。此外,利用多尺度金字塔判别器(MSPD)在不同维度下检查生成结果的质量,指导具有全局一致性图像的生成。实验结果表明,在Mayo和Piglet数据集上,Trident GAN的平均峰值信噪比(PSNR)和结构相似性(SSIM)分别达到了31.519 3 dB/0.883 0和33.633 1 dB/0.947 8,与高频敏感GAN (HFSGAN)相比,参数量降低75.58%,测试时间缩短36.36%。可见,与HFSGAN等方法相比, Trident GAN可在较少的计算负荷下提高了图像质量。
中图分类号:
王丽芳, 任文婧, 郭晓东, 张荣国, 胡立华. 用于低剂量CT图像降噪的多路特征生成对抗网络[J]. 计算机应用, 2026, 46(1): 270-279.
Lifang WANG, Wenjing REN, Xiaodong GUO, Rongguo ZHANG, Lihua HU. Trident generative adversarial network for low-dose CT image denoising[J]. Journal of Computer Applications, 2026, 46(1): 270-279.
| 方法 | PSNR/dB | SSIM |
|---|---|---|
| LDCT | 26.789 1±1.721 8 | 0.824 4±0.042 6 |
| BM3D | 27.741 2±1.524 8 | 0.834 5±0.026 5 |
| RED-CNN | 27.783 2±1.548 8 | 0.844 2±0.022 6 |
| pix2pix | 28.325 3±1.339 4 | 0.823 1±0.033 9 |
| HFSGAN | 30.081 8±1.167 5 | 0.852 1±0.018 4 |
| CNCL | 29.065 8±2.353 4 | 0.860 9±0.022 4 |
| TED-Net | 31.087 1±1.754 4 | 0.878 3±0.039 9 |
| DehazeFormer | 31.128 1±1.803 3 | 0.880 5±0.040 0 |
| DualED-GAN | 31.473 6±1.749 1 | 0.876 6±0.041 2 |
| Trident GAN | 31.5193±1.9214 | 0.8830±0.0422 |
表1 Mayo测试集上的平均量化表现
Tab. 1 Average quantified performance on Mayo test set
| 方法 | PSNR/dB | SSIM |
|---|---|---|
| LDCT | 26.789 1±1.721 8 | 0.824 4±0.042 6 |
| BM3D | 27.741 2±1.524 8 | 0.834 5±0.026 5 |
| RED-CNN | 27.783 2±1.548 8 | 0.844 2±0.022 6 |
| pix2pix | 28.325 3±1.339 4 | 0.823 1±0.033 9 |
| HFSGAN | 30.081 8±1.167 5 | 0.852 1±0.018 4 |
| CNCL | 29.065 8±2.353 4 | 0.860 9±0.022 4 |
| TED-Net | 31.087 1±1.754 4 | 0.878 3±0.039 9 |
| DehazeFormer | 31.128 1±1.803 3 | 0.880 5±0.040 0 |
| DualED-GAN | 31.473 6±1.749 1 | 0.876 6±0.041 2 |
| Trident GAN | 31.5193±1.9214 | 0.8830±0.0422 |
| 方法 | 胸部LDCT图像 | 腹部LDCT图像 | ||
|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | |
| LDCT | 15.354 | 0.483 | 21.327 | 0.483 |
| BM3D | 16.001 | 0.499 | 25.792 | 0.621 |
| RED-CNN | 17.338 | 0.600 | 25.994 | 0.616 |
| pix2pix | 18.122 | 0.613 | 23.131 | 0.462 |
| HFSGAN | 18.483 | 0.638 | 25.352 | 0.561 |
| CNCL | 18.425 | 0.634 | 23.620 | 0.550 |
| TED-Net | 18.788 | 0.652 | 25.872 | 0.584 |
| DehazeFormer | 19.006 | 0.667 | 26.024 | 0.616 |
| DualED-GAN | 18.740 | 0.612 | 26.056 | 0.599 |
| Trident GAN | 19.615 | 0.675 | 26.490 | 0.621 |
表2 具有代表性的局部ROI的平均量化表现
Tab. 2 Average quantified performance of representative local ROI
| 方法 | 胸部LDCT图像 | 腹部LDCT图像 | ||
|---|---|---|---|---|
| PSNR/dB | SSIM | PSNR/dB | SSIM | |
| LDCT | 15.354 | 0.483 | 21.327 | 0.483 |
| BM3D | 16.001 | 0.499 | 25.792 | 0.621 |
| RED-CNN | 17.338 | 0.600 | 25.994 | 0.616 |
| pix2pix | 18.122 | 0.613 | 23.131 | 0.462 |
| HFSGAN | 18.483 | 0.638 | 25.352 | 0.561 |
| CNCL | 18.425 | 0.634 | 23.620 | 0.550 |
| TED-Net | 18.788 | 0.652 | 25.872 | 0.584 |
| DehazeFormer | 19.006 | 0.667 | 26.024 | 0.616 |
| DualED-GAN | 18.740 | 0.612 | 26.056 | 0.599 |
| Trident GAN | 19.615 | 0.675 | 26.490 | 0.621 |
| 方法 | PSNR/dB | SSIM |
|---|---|---|
| LDCT | 32.437 6±3.032 2 | 0.913 9±0.035 4 |
| BM3D | 32.740 1±3.002 1 | 0.934 6±0.022 4 |
| RED-CNN | 32.127 2±2.893 9 | 0.918 6±0.022 0 |
| pix2pix | 33.033 6±2.704 7 | 0.911 7±0.033 4 |
| HFSGAN | 33.240 6±2.404 0 | 0.923 6±0.031 2 |
| CNCL | 32.924 0±2.322 1 | 0.927 0±0.027 3 |
| TED-Net | 32.827 5±2.545 7 | 0.932 9±0.025 0 |
| DehazeFormer | 33.395 3±2.896 8 | 0.937 7±0.024 4 |
| DualED-GAN | 33.471 8±2.748 3 | 0.936 3±0.025 6 |
| Trident GAN | 33.6331±2.6214 | 0.9478±0.0322 |
表3 Piglet测试集上的平均量化表现
Tab. 3 Average quantified performance on Piglet test set
| 方法 | PSNR/dB | SSIM |
|---|---|---|
| LDCT | 32.437 6±3.032 2 | 0.913 9±0.035 4 |
| BM3D | 32.740 1±3.002 1 | 0.934 6±0.022 4 |
| RED-CNN | 32.127 2±2.893 9 | 0.918 6±0.022 0 |
| pix2pix | 33.033 6±2.704 7 | 0.911 7±0.033 4 |
| HFSGAN | 33.240 6±2.404 0 | 0.923 6±0.031 2 |
| CNCL | 32.924 0±2.322 1 | 0.927 0±0.027 3 |
| TED-Net | 32.827 5±2.545 7 | 0.932 9±0.025 0 |
| DehazeFormer | 33.395 3±2.896 8 | 0.937 7±0.024 4 |
| DualED-GAN | 33.471 8±2.748 3 | 0.936 3±0.025 6 |
| Trident GAN | 33.6331±2.6214 | 0.9478±0.0322 |
| 方法 | 参数量/106 | 单幅测试时间/s |
|---|---|---|
| BM3D | — | 1.207 |
| RED-CNN | 1.84 | 0.104 |
| pix2pix | 57.19 | 0.067 |
| HFSGAN | 108.87 | 0.088 |
| CNCL | 46.59 | 0.109 |
| TED-Net | 1.75 | 0.142 |
| DehazeFormer | 2.25 | 0.067 |
| DualED-GAN | 25.11 | 0.072 |
| Trident GAN | 26.59 | 0.056 |
表4 参数量与测试时间的比较
Tab. 4 Comparison of parameter count and test time
| 方法 | 参数量/106 | 单幅测试时间/s |
|---|---|---|
| BM3D | — | 1.207 |
| RED-CNN | 1.84 | 0.104 |
| pix2pix | 57.19 | 0.067 |
| HFSGAN | 108.87 | 0.088 |
| CNCL | 46.59 | 0.109 |
| TED-Net | 1.75 | 0.142 |
| DehazeFormer | 2.25 | 0.067 |
| DualED-GAN | 25.11 | 0.072 |
| Trident GAN | 26.59 | 0.056 |
| 模型 | 子模块 | PSNR/dB | SSIM | |||
|---|---|---|---|---|---|---|
| Trident Block | SCAM | MFF | MSPD | |||
| w/o Tri1 | √ | √ | √ | 29.712 8 | 0.879 9 | |
| w/o Tri2 | √ | √ | √ | 31.052 1 | 0.867 0 | |
| w/o MFF | √ | √ | √ | 31.120 5 | 0.877 2 | |
| w/o MSPD | √ | √ | √ | 30.975 4 | 0.875 1 | |
| Trident GAN | √ | √ | √ | √ | 31.5193 | 0.8830 |
表5 消融实验的平均量化性能
Tab. 5 Average quantified performance of ablation experiments
| 模型 | 子模块 | PSNR/dB | SSIM | |||
|---|---|---|---|---|---|---|
| Trident Block | SCAM | MFF | MSPD | |||
| w/o Tri1 | √ | √ | √ | 29.712 8 | 0.879 9 | |
| w/o Tri2 | √ | √ | √ | 31.052 1 | 0.867 0 | |
| w/o MFF | √ | √ | √ | 31.120 5 | 0.877 2 | |
| w/o MSPD | √ | √ | √ | 30.975 4 | 0.875 1 | |
| Trident GAN | √ | √ | √ | √ | 31.5193 | 0.8830 |
| 模型 | PSNR/dB | SSIM |
|---|---|---|
| 1-FPA | 31.249 3 | 0.876 1 |
| Trident GAN (2-FPA) | 31.5193 | 0.883 0 |
| 3-FPA | 31.349 1 | 0.8850 |
表6 FPA模块个数的平均量化表现
Tab. 6 Average quantified performance of FPA module count
| 模型 | PSNR/dB | SSIM |
|---|---|---|
| 1-FPA | 31.249 3 | 0.876 1 |
| Trident GAN (2-FPA) | 31.5193 | 0.883 0 |
| 3-FPA | 31.349 1 | 0.8850 |
| [1] | XIA W, SHAN H, WANG G, et al. Physics-/model-based and data-driven methods for low-dose CT: a survey [J]. IEEE Signal Processing Magazine, 2023, 40(2): 89-100. |
| [2] | 李云飞,李淑婷,张帅,等.深度学习在肿瘤影像分类中的研究进展[J].中华肿瘤防治杂志, 2024, 31(12): 719-724. |
| LI Y F, LI S T, ZHANG S, et al. Research progress of deep learning in tumor images classification [J]. Chinese Journal of Cancer Prevention and Treatment, 2024, 31(12): 719-724. | |
| [3] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
| [4] | ZHANG J, NIU Y, SHANGGUAN Z, et al. A novel denoising method for CT images based on U-net and multi-attention [J]. Computers in Biology and Medicine, 2023, 152: No.106387. |
| [5] | GAO Q, LI Z L, ZHANG J, et al. CoreDiff: contextual error-modulated generalized diffusion model for low-dose CT denoising and generalization [J]. IEEE Transactions on Medical Imaging, 2024, 43(2): 745-759. |
| [6] | XIA W, LYU Q, WANG G. Low-dose CT using denoising diffusion probabilistic model for 20× speedup [EB/OL]. [2024-11-29]. . |
| [7] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144. |
| [8] | WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT [J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2536-2545. |
| [9] | CHI J, WU C, YU X, et al. Single low-dose CT image denoising using a generative adversarial network with modified U-Net generator and multi-level discriminator [J]. IEEE Access, 2020, 8: 133470-133487. |
| [10] | YANG C, SHEN Y, XU Y, et al. Improving GANs with a dynamic discriminator [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 15093-15104. |
| [11] | YANG L, SHANGUAN H, ZHANG X, et al. High-frequency sensitive generative adversarial network for low-dose CT image denoising [J]. IEEE Access, 2020, 8: 930-943. |
| [12] | MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821. |
| [13] | 刘安阳,赵怀慈,蔡文龙,等.基于主动判别机制的自适应生成对抗网络图像去模糊算法[J].计算机应用, 2023, 43(7): 2288-2294. |
| LIU A Y, ZHAO H C, CAI W L, et al. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. | |
| [14] | DALMAZ O, YURT M, ÇUKUR T. ResViT: residual vision transformers for multimodal medical image synthesis [J]. IEEE Transactions on Medical Imaging, 2022, 41(10): 2598-2614. |
| [15] | ZHAO J, LI D, KASSAM Z, et al. Tripartite-GAN: synthesizing liver contrast-enhanced MRI to improve tumor detection [J]. Medical Image Analysis, 2020, 63: No.101667. |
| [16] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [EB/OL]. [2024-11-29]. . |
| [17] | CHEN Z, NIU C, GAO Q, et al. LIT-Former: linking in-plane and through-place Transformers for simultaneous CT image denoising and deblurring [J]. IEEE Transactions on Medical Imaging, 2024, 43(5): 1880-1894. |
| [18] | LI H, YANG X, YANG S, et al. Transformer with double enhancement for low-dose CT denoising [J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(10): 4660-4671. |
| [19] | PENG J, LI X, ZHANG X. MDnT: a multi-scale denoising Transformer beyond real noise image denoising [C]// Proceedings of the 7th International Conference on Electronic Technology and Information Science. Piscataway: IEEE, 2022: 1-5. |
| [20] | WANG J, ZHANG B, WANG Y, et al. CrossU-Net: dual-modality cross-attention U-Net for segmentation of precancerous lesions in gastric cancer [J]. Computerized Medical Image and Graphics, 2024, 112: No.102339. |
| [21] | WANG P, ZHU H, ZHANG H, et al. LRB-T: local reasoning back-projection transformer for the removal of bad weather effects in images [J]. Neural Computing and Applications, 2024, 36(2): 773-789. |
| [22] | AMIR S W, ARORA A, KHAN S, et al. Restormer: efficient Transformer for high-resolution image restoration [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5718-5729. |
| [23] | CHEN C F R, FAN Q, PANDA R. CrossViT: cross-attention multi-scale Vision Transformer for image classification [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 347-356. |
| [24] | American Association of Physicists in Medicine. Low dose CT grand challenge [EB/OL]. [2024-04-20]. . |
| [25] | Piglet dataset [DB/OL]. [2024-04-26]. . |
| [26] | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. |
| [27] | DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. |
| [28] | CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network [J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. |
| [29] | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with condition adversarial networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976. |
| [30] | GENG M, MENG X, YU J, et al. Content-noise complementary learning for medical image denoising [J]. IEEE Transactions on Medical Imaging, 2022, 41(2): 407-419. |
| [31] | WANG D, WU Z, YU H. TED-Net: convolution-free T2T vision transformer-based encoder-decoder dilation network for low-dose CT denoising [C]// Proceedings of the 2021 International Workshop on Machine Learning in Medical Imaging, LNCS 12966. Cham: Springer, 2021: 416-425. |
| [32] | SONG Y, HE Z, QIAN H, et al. Vision Transformers for single image dehazing [J]. IEEE Transactions on Image Processing, 2023, 32: 1927-1941. |
| [33] | 上官宏,任慧莹,张雄,等.基于双编码器双解码器GAN的低剂量CT降噪模型[J].计算机应用, 2025, 45(2): 624-632. |
| SHANGGUAN H, REN H Y, ZHANG X, et al. Low-dose CT denoising model based on dual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2025, 45(2): 624-632. |
| [1] | 李亚男, 郭梦阳, 邓国军, 陈允峰, 任建吉, 原永亮. 基于多模态融合特征的并分支发动机寿命预测方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 305-313. |
| [2] | 姚理进, 张迪, 周丕宇, 曲志坚, 王海鹏. 基于Transformer和门控循环单元的磷酸化肽从头测序算法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 297-304. |
| [3] | 桑雨, 贡同, 赵琛, 于博文, 李思漫. 具有光度对齐的域适应夜间目标检测方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 242-251. |
| [4] | 昝志辉, 王雅静, 李珂, 杨智翔, 杨光宇. 基于SAA-CNN-BiLSTM网络的多特征融合语音情感识别方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 69-76. |
| [5] | 马英杰, 覃晶滢, 赵耿, 肖靖. 面向物联网图像的深度压缩感知网络及其混沌加密保护方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 144-151. |
| [6] | 樊娜, 罗闯, 张泽晖, 张梦瑶, 穆鼎. 基于改进生成对抗网络的车辆轨迹语义隐私保护机制[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 169-180. |
| [7] | 吴俊衡, 王晓东, 何启学. 基于统计分布感知与频域双通道融合的时序预测模型[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 113-123. |
| [8] | 菅银龙, 陈学斌, 景忠瑞, 钟琪, 张镇博. 联邦学习中基于条件生成对抗网络的数据增强方案[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 21-32. |
| [9] | 李维刚, 邵佳乐, 田志强. 基于双注意力机制和多尺度融合的点云分类与分割网络[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 3003-3010. |
| [10] | 王翔, 陈志祥, 毛国君. 融合局部和全局相关性的多变量时间序列预测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2806-2816. |
| [11] | 王芳, 胡静, 张睿, 范文婷. 内容引导下多角度特征融合医学图像分割网络[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 3017-3025. |
| [12] | 邓伊琳, 余发江. 基于LSTM和可分离自注意力机制的伪随机数生成器[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2893-2901. |
| [13] | 吕景刚, 彭绍睿, 高硕, 周金. 复频域注意力和多尺度频域增强驱动的语音增强网络[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2957-2965. |
| [14] | 李进, 刘立群. 基于残差Swin Transformer的SAR与可见光图像融合[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2949-2956. |
| [15] | 周金, 李玉芝, 张徐, 高硕, 张立, 盛家川. 复杂电磁环境下的调制识别网络[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2672-2682. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||