在初等数学领域的命名实体识别(NER)中,针对传统命名实体识别方法中词嵌入无法表征一词多义以及特征提取过程中忽略部分局部特征的问题,提出一种基于BERT的初等数学文本命名实体识别方法——BERT-BiLSTM-IDCNN-CRF。首先,采用BERT进行预训练,然后将训练得到的词向量输入到双向长短期记忆(BiLSTM)网络与迭代膨胀卷积网络(IDCNN)中提取特征,再将两种神经网络输出的特征进行合并,最后经过条件随机场(CRF)修正后进行输出。实验结果表明:BERT-BiLSTM-IDCNN-CRF在初等数学试题数据集上的F1值为93.91%,相较于BiLSTM-CRF基准方法的F1值提升了4.29个百分点,相较于BERT-BiLSTM-CRF方法的F1值提高了1.23个百分点;该方法对线、角、面、数列等实体识别的F1值均高于91%,验证了该方法对初等数学实体识别的有效性。此外,在所提方法的基础上结合注意力机制后,该方法的召回率下降了0.67个百分点,但准确率上升了0.75个百分点,注意力机制的引入对所提方法的识别效果提升不大。
颈动脉斑块的形成与复杂的血流动力学因素密切相关,血液流动状况的精确模拟对颈动脉斑块的临床诊断具有重要意义。为了精确模拟脉动流场,在格子Boltzmann方法(LBM)的基础上,添加大涡模拟(LES)模型,建立了LBM-LES颈动脉模拟算法。利用医学图像重构软件,建立颈动脉狭窄真实几何模型,对颈动脉狭窄脉动流动进行了数值模拟,通过计算血液流动速度、壁面剪切应力(WSS)等,得出了有意义的流动结果,验证了LBM-LES对颈动脉狭窄后段血液流动研究的有效性。基于OpenMP编程环境,在高性能集群机全互联胖节点上进行了千万量级网格的并行计算,结果表明LBM-LES颈动脉模拟算法具有较好的并行性能。
针对非负矩阵分解(NMF)语音增强算法在低信噪比(SNR)非稳定环境下存在噪声残留的问题,提出一种基于感知掩蔽的重构NMF(PM-RNMF)单通道语音增强算法。首先,将心理声学掩蔽特性应用于NMF语音增强算法中;其次,对不同频率位采用不同的掩蔽阈值,建立自适应感知掩蔽增益函数,通过阈值约束残余噪声能量和语音失真能量;最后,结合语音存在概率(SPP)进行感知增益修正,重构NMF算法,以此建立新的目标函数。仿真结果表明,在不同SNR的3种非稳定噪声环境下,与NMF、重构NMF(RNMF)、感知掩蔽深度神经网络(PM-DNN)算法相比,PM-RNMF算法的感知语音质量评估(PESQ)平均值分别提高了0.767、0.474、0.162,信源失真比(SDR)平均值分别提高了2.785、1.197、0.948。实验结果表明,无论是在低频还是高频PM-RNMF有更好的降噪效果。
针对路网限制和物体位置的不确定性,提出了路网中位置不确定的二元反kNN查询(PBRkNN),旨在查找一组位置不确定的点,使得每个不确定点的kNN包含给定查询点的概率大于一个阈值。为了解决该问题,首先提出一种基于Dijkstra进行剪枝处理的基本算法,即PE算法;接着在PE算法的基础上通过预处理计算出每个点的kNN从而加快查询速度,即PPE算法;而为了进一步减小PPE算法中范围查询的开销,提出PPEE算法,利用网格索引来索引范围查询中要查询的不确定空间点,从而提升算法的效率。最后,在北京和加州路网数据集上进行了大量实验,结果表明通过一些预处理的策略确实可以有效地处理路网中位置不确定的二元反kNN查询。
针对传统互联技术难以实现内外网在安全可信情况下互联互通互操作的问题,将可信计算中的相关技术应用到网络互联中,实现内外网在安全隔离情况下的信息交互。研究了网络可信互联框架模型,结合该模型,对基于身份的公钥认证算法进行改进,设计了认证系统与接入者之间的密码协议。分析实体的持续性行为进行并建立评估树模型,对接入者自身的安全状况进行综合可信度评估。最后,通过测试实验对评估方法进行分析与验证,实验结果表明,该评估模型排除时效偏差等不利因素的影响,具有可行性和有效性。
针对手势识别算法复杂度高、在嵌入式系统上运行效率低的问题,提出一种以定点运算为主的基于形状特征的手势识别方法。采用内部最大圆法和圆截法提取特征点,在手掌内部寻找一个最大圆来获取掌心坐标;同时根据指尖的几何特征,在手形边缘以画圆的方式获取指尖,从而得到手势的手指数、方向和掌心位置等特征信息;再对这些特征信息进行分类并识别。通过对算法进行改进,完成了在数字信号处理器(DSP)上的移植。实验证明该方法对于不同人的手具有适应性,适合在DSP上处理,与其他基于形状特征的手势识别算法相比,平均识别率提高了1.6%~8.6%,计算机对算法的处理速度提高了2%,因此所提算法有利于嵌入式手势识别系统的实现,为嵌入式手势识别系统打下基础。
针对使用扩展卡尔曼滤波(EKF)进行环境地图的创建对线性系统效果较好而对非线性系统的线性化受误差影响较大的问题,提出一种基于对Kinect采集到的环境数据和迭代扩展卡尔曼滤波(IEKF)算法的室内环境三维地图创建。该方法使用成本较低的Kinect传感器获取深度数据然后结合IEKF实现摄像头轨迹预测,最后利用最近点迭代(ICP)算法对深度图像进行配准得到室内环境三维点云图。实验结果表明,IEKF算法与传统的EKF算法相比,得到的轨迹更平滑、误差更小,同时所得到的三维点云图更加光滑。该方法实现了三维地图构建,较为实用,效果较好。
针对单一肌电信号在控制系统中正确识别率不高问题,设计并实现了一种基于支持向量机(SVM)多分类的眼电(EOG)辅助肌电(EMG)的人机交互(HCI)系统。该系统采用改进小波包算法和阈值法分别对EMG信号和EOG信号进行特征提取,并对特征向量融合;然后提取特征参数作为SVM的输入来识别EMG信号和EOG信号动作模式,根据分类结果生成控制命令。实验证明,该系统比单一肌电控制系统更便于操作,稳定性好,正确识别率高。
在B. J. Kuipers的QSIM算法基础上,提出了比较约束概念用于消减推理空间。给出了各定性约束的传递规则,用于对系统的推理仿真。以系统故障的观测结果为初始状态,依据约束流的传播,诊断变量异变的位置和原因,并把诊断结果进行正向推理,消除部分冗余。在压缩制冷系统实例中,根据制冷系统的定性微分方程建立约束关系。针对制冷效果不佳的症状,仿真诊断出故障源为系统中有空气或氟利昂充液量过大的故障,与实际系统相一致。