现有的多视图聚类算法往往缺乏对各视图可靠度的评估和对视图进行加权的能力,而一些具备视图加权的多视图聚类算法则通常依赖于特定目标函数的迭代优化,其目标函数的适用性及部分敏感超参数调优的合理性均对实际应用有显著影响。针对这些问题,提出一种基于视图互信息加权的多视图集成聚类(MEC-VMIW)算法,主要过程可分为两个阶段,即视图互加权阶段与多视图集成聚类阶段。在视图互信息加权阶段,对数据集进行多次随机降采样,以降低评估加权过程的问题规模,进而构建多视图降采样聚类集合,根据不同视图的聚类结果之间的多轮互评得到视图可靠度评估,并据此对视图进行加权;在多视图集成聚类阶段,对各个视图数据构建基聚类集合,并将多个基聚类集合加权建模至二部图结构,利用高效二部图分割算法得到最终多视图聚类结果。在若干个多视图数据集上的实验结果验证了所提出的多视图集成聚类算法的鲁棒聚类性能。
近年来越来越多的学校广泛使用网络在线授课,然而互联网中海量的学习资源令学习者难以抉择。因此,研究在线学习资源推荐并为学习者进行个性化推荐非常重要,这可以帮助学习者快速获取其所需的优质学习资源。针对在线学习资源推荐的研究现状,从以下5个方面进行分析总结。首先,总结了目前国内外在线教育平台在学习资源推荐方面的工作;其次,分析和探讨了以知识点习题、学习路径、学习视频和学习课程为学习资源推荐目标的4种算法;接着,分别从学习者和学习资源的角度出发,以具体的算法为例,详述了常用的基于学习者画像、基于学习者行为和基于学习资源本体的3种学习资源推荐算法;此外,总结了公开的在线学习资源数据集;最后,分析了学习资源推荐系统目前存在的问题和未来的发展方向。
针对三维模型的分类问题,提出一种基于Transformer的三维(3D)模型小样本识别方法。首先,将支持和查询样本的3D点云模型输入特征提取模块中,以得到特征向量;然后,在Transformer模块中计算支持样本的注意力特征;最后,利用余弦相似性网络,计算查询与支持样本的关系分数。在ModelNet 40数据集上,相较于两层长短期记忆(Dual-LSTM)方法,所提方法的5-way 1-shot和5-way 5-shot的识别准确率分别提高了34.54和21.00个百分点;同时,所提方法在ShapeNet Core数据集上也取得了较高的准确率。实验结果表明,所提方法能够更准确地识别全新的3D模型类别。
针对目前团购推荐方法较少结合单个用户与群组用户,并且对时间间隔、社交关系等上下文相关信息的利用不充分的问题,提出了一种基于社交关系和时序信息的团购推荐方法。对单个用户进行推荐时,针对循环神经网络(RNN)的门控循环单元(GRU)在团购推荐时没有考虑时序信息的影响,以及用户-商品交互序列中不相关的商品数据会产生噪声等问题,提出了融合时序感知GRU和自注意力的团购推荐模型(RTSA)。首先,通过计算用户购买的任意两个商品之间的个性化时间间隔,构建了时序感知GRU(TGRU)模型;然后,采用自注意力网络研究商品位置及个性化时间间隔的影响;最后,实验结果表明在Amazon Beauty数据集中,RTSA相较于对单个用户推荐的最优的基线模型——基于时间间隔感知自注意力的序列化推荐模型(TiSASRec),前10个商品命中率提升了11.73%。对群组用户进行推荐时,针对团购群组推荐中预定义的融合策略不能动态获取群组用户权重,以及群组-项目交互数据的稀疏性等问题,提出了融合社交网络和分层自注意力的团购推荐模型(SSAGR)。首先,采用RNN捕捉团购中用户随时间变化的复杂潜在兴趣;其次,利用分层自注意力网络将社交网络信息整合到用户表示中,在不同权重下实现群组偏好聚合策略;然后,通过神经协同过滤(NCF)挖掘群组-项目交互,并实现了团购推荐;最后,实验结果表明,在MaFengWo数据集中,SSAGR相较于对群组用户推荐的最优的基线模型AGREE(Attentive Group REcommEndation),前5个商品命中率提升了3.53%。
针对目前单目图像在深度估计中依然存在边缘以及深度最大区域预测不准确的问题,提出了一种基于金字塔分割注意力网络的单目深度估计方法(PS-Net)。首先,PS-Net以边界引导和场景聚合网络(BS-Net)为基础,引入金字塔分割注意力(PSA)模块处理多尺度特征的空间信息并且有效建立多尺度通道注意力间的长期依赖关系,从而提取深度梯度变化剧烈的边界和深度最大的区域;然后,使用Mish函数作为解码器中的激活函数,以进一步提升网络的性能;最后,在NYUD v2(New York University Depth dataset v2)和iBims-1(independent Benchmark images and matched scans v1)数据集上进行训练评估。iBims-1数据集上的实验结果显示,所提网络在衡量定向深度误差(DDE)方面与BS-Net相比减小了1.42个百分点,正确预测深度像素的比例达到81.69%。以上表明所提网络在深度预测上具有较高的准确性。
针对基于神经风格迁移的信息隐藏算法没有解决彩色图像的嵌入这一问题,提出了一种基于风格迁移过程的彩色图像信息隐藏算法。首先,利用卷积神经网络(CNN)特征提取的优势,分别提取载体图像的语义信息、风格图像的风格信息以及彩色图像的特征信息;然后,将图像的语义内容和不同风格融合在一起;最后,在通过解码器对载体图像进行风格迁移的同时完成彩色图像的嵌入。实验结果表明,所提算法可以将秘密图像有效融入到生成的风格化图像中,使得秘密信息嵌入行为与风格变换的行为不可区分,在保持算法安全性的前提下,所提算法的隐藏容量提高到24 bpp,峰值信噪比(PSNR)和结构相似性(SSIM)的平均值分别达到了25.29 dB和0.85,有效解决了彩色图像的嵌入问题。
针对现有的帕金森病(PD)的诊断方法,对基于步态分析的PD的辅助诊断方法进行了综述。在临床上,常见的步态评估PD的诊断方法是基于量表的,该方法虽然简单方便,但主观性强,且对医生的临床经验要求较高。而计算机技术的发展为步态分析提供了更多的方法。首先,总结了PD以及它在步态上的异常表现。然后,回顾了基于步态分析的PD辅助诊断的常用方法,这些方法大致可分为基于可穿戴设备的和基于非可穿戴设备的:可穿戴设备体积小、辅助诊断准确率高,可长时间监测患者的步态状况;非可穿戴设备则是通过微软Kinect等视频传感器捕捉人体步态数据,避免了穿戴相关设备以及对患者行动的限制。最后,指出了现有的步态分析方法中存在的不足并探讨了未来可能的发展趋势。
算法平台作为自动机器学习的实现方式近年来受到广泛关注,然而这些平台的业务流程均需要人工搭建,且这些平台存在模型调用不灵活以及无法针对特定业务定制化的自动算法构建的问题。针对这些问题,提出了一种面向业务需求的算法路径自组配模型。首先,基于图卷积网络(GCN)与word2vec表示对代码的序列特征与结构特征同时建模;然后,进一步通过聚类模型发现算法集合中的功能,并基于得到的功能子集为子集间算法组件的路径发现作准备;最后,基于先验知识训练得到关系发现模型与排序模型,挖掘候选代码组件的自组织路径,从而实现算法代码自组配。使用所提评价指标进行对比分析,所提模型的最好结果为0.8,而Okapi BM25+word2vec基线模型的最好结果为0.21。所提模型在一定程度上解决了传统代码表示方法中代码结构与语义信息缺失的问题,并为精细化算法流程自组织和算法管道自动构建的研究奠定了基础。
针对网页频繁改版带来的网页源码变动,尤其是文章日期、正文或来源机构等网页源码中目标实体的元素结构或属性标识变动所引起的爬虫代码失效、人力维护成本过高的问题,提出一种基于网页源码结构理解的自适应爬虫代码生成方法。首先,通过分析网页结构特征变动规律提取相应爬虫代码;然后,利用Encoder-Decoder模型表征网页源码及代码的变动,通过融合网页源码自身结构语义特征、网页源码变动特征及网页代码变动特征,得到自适应代码生成模型;最后,完善自适应系统的感知、生成和激活机制,从而形成具有自适应处理能力的爬虫系统。经实验验证,所提自适应代码生成模型的最终准确率为78.5%,与TF-IDF+Seq2Seq和TriDNR+Seq2Seq两种生成模型相比,所提模型在网页源码变动的表示和代码生成的有效性上具有一定的优越性。因此,所提方法能够解决网页源码变动引起的爬虫代码运行问题,为网络资源获取即爬虫技术的自适应处理能力提供新思路。
图像分割是由图像处理到图像分析的关键步骤。针对聚类分割对初始聚类中心有较大依赖的局限性,提出了一种基于改进粒子群优化(PSO)算法和遗传变异的图像分割模型PSOM-K(Particle Swarm Optimization Mutations-K-means)。首先,对PSO公式进行改进,即增加了随机邻居粒子位置对自身位置的影响,并扩大了算法的搜索空间,使算法能快速地找到全局最优解;其次,结合遗传算法的变异操作来提高模型的泛化能力;然后,将改进后的PSO算法从红(R)、绿(G)、蓝(B)三通道来初始化k均值(k-means)聚类中心的位置;最后,用k-means从R、G、B三通道对图像进行分割并合并这三通道的图像。在伯克利分割数据集(BSDS500)上的实验结果表明,在k=4时,PSOM-K在特征相似性(FSIM)上相较于CEFO (Chaotic Electromagnetic Field Optimization)算法提升了7.7%~12.69%,相较于WOA-DE(Whale Optimization Algorithm-Differential Evolution)方法提升了5.05%~19.02%。在k=40时,相较于细粒度分割算法HWOA,PSOM-K在FSIM指标最多下降0.45%,但峰值信噪比(PSNR)指标提升7.59%~13.58%。因此,独立3个通道、增加粒子群中随机邻居粒子的位置影响和遗传变异是寻找k-means聚类中心的较优位置的3个有效策略,它们能极大地提高图像分割的性能。
使用传统的基于图的方法进行离群点检测构造转移概率矩阵需要使用数据的整体分布,容易忽略数据的局部信息,导致检测精度低,而使用数据的局部信息可能导致“悬空链接”的问题。针对这些问题,提出一个基于全息图平稳分布因子的离群点检测算法(HSDFOD)。首先,使用相似度矩阵自适应地获取每个数据点的邻居集合构造一个局部信息图;然后,引入最小生成树构造一个全局信息图;最后,利用局部信息图和全局信息图融合为一个全息图构造转移概率矩阵进行马尔可夫随机游走,并通过生成的平稳分布检测离群点。在人工数据集A1~A4上,HSDFOD的精确率均高于SOD(Outlier Detection in axis-parallel Subspaces of high dimensional data)、SUOD(accelerating large-Scale Unsupervised heterogeneous Outlier Detection)、IForest (Isolation Forest)和HBOS (Histogram-Based Outlier Score);曲线下面积(AUC)整体上也优于这4个对比算法。在真实数据集上,HSDFOD的精确率均高于80%,AUC均高于SOD、SUOD、IForest和HBOS。可见,所提算法在离群点检测上有较好的应用前景。
?鱼优化算法(ROA)的寻优过程包括依附宿主、经验攻击和宿主觅食3种模式,它的探索能力与开发能力较强;但原始算法通过经验攻击切换宿主,导致探索与开发之间平衡较差、收敛较慢且容易陷入局部最优。针对上述问题,提出了一种基于混沌宿主切换机制的改进?鱼优化算法(MROA)。首先,设计一种新的宿主切换机制,以更好地平衡探索和开发的能力;然后,为了使?鱼初始宿主多样化,引入Tent混沌映射进行种群初始化,进一步优化算法的性能;最后,将MROA与原始ROA和爬行动物搜索算法(RSA)等6种算法在CEC2020测试函数上进行对比实验。分析实验结果可知,MROA求得的最优适应度值、平均适应度值和适应度值标准差分别比ROA、RSA、鲸鱼优化算法(WOA)、哈里斯鹰优化(HHO)算法、精子群优化(SSO)算法、正余弦算法(SCA)和乌燕鸥优化算法(STOA)平均提高了28%、33%和12%。基于CEC2020的测试结果表明,MROA具有良好的寻优能力、收敛能力和鲁棒性;同时,通过求解焊接梁设计问题和多片式离合器制动器设计问题,进一步验证了MROA在工程问题中的有效性。
传统分类器难以应对含概念漂移的复杂类型数据流分类这一难题,且得到的分类效果往往不尽如人意。针对不同类型数据流中处理概念漂移的方法,从不平衡、概念演化、多标签和含噪声4个方面对概念漂移复杂数据流分类方法进行了综述。首先,对基于块的和基于在线的学习方式对不平衡概念漂移数据流、基于聚类和基于模型的学习方式对概念演化概念漂移数据流、基于问题转换和基于算法适应的学习方式对多标签概念漂移数据流和含噪声概念漂移数据流这四个方面的分类方法进行了分析介绍;然后,对所提到概念漂移复杂数据流分类方法的实验结果及性能指标进行了详细的对比和分析;最后,给出了现有方法的不足和下一步研究方向。
针对云边环境下用户需求不确定导致微服务组合逻辑会随着用户需求的变化而动态调整的问题,提出了云边环境下的微服务组合系统的动态演化方法(DE4MC)。首先,自动识别用户的操作并进行相应的算法策略;其次,在部署阶段,用户提交业务流程之后,系统通过所提方法中的部署算法选择较优的节点进行部署;最后,在动态调整阶段,用户调整业务流程实例后,系统通过所提方法中的动态调整算法进行动态演化。所提方法中的两个算法均综合考虑微服务实例的迁移代价、微服务与用户的数据通信代价和微服务之间的数据流传输代价以选择较优的节点进行部署,从而缩短了运行时间,降低了演化开销。在仿真实验中,在部署阶段,所提方法的部署算法与启发式算法(HA)+二代非支配排序遗传算法(NSGA-Ⅱ)的算法组合相比,各个规模的平均运行时间缩短了9.7%,演化总开销降低了16.8%;在动态调整阶段,所提方法的动态调整算法与HA+NSGA-Ⅱ的算法组合相比,各个规模平均运行时间缩短了6.3%,演化总开销降低了21.7%。实验结果表明,所提方法保证了云边环境下微服务组合系统能在演化开销低和业务流程时间短的条件下及时演化,并且能够提供用户满意的服务质量。
高效用项集挖掘(HUIM)能够挖掘事务数据库中具有重要意义的项集,从而帮助用户更好地进行决策。针对智能优化算法的应用能够显著提高海量数据中高效用项集的挖掘效率这一现状,对基于智能优化算法的HUIM方法进行了综述。首先,以智能优化算法的类别为角度,从基于群智能优化、基于进化以及基于其他智能优化算法的方法这3个方面对基于智能优化算法的HUIM方法进行了详细的分析与总结。同时,从粒子更新方式的角度对基于粒子群优化(PSO)的HUIM方法进行了详细梳理,包括基于传统更新策略、基于sigmoid函数、基于贪心、基于轮盘赌以及基于集合的方法。另外,从种群更新方法、对比算法、参数设置、优缺点等角度对比分析了基于群智能优化算法的HUIM方法。然后,从遗传和仿生两个方面对基于进化的HUIM方法进行总结概括。最后,针对目前基于智能优化算法的HUIM方法所存在的问题,提出了下一步的研究方向。