通过分析分布式机器学习中作业性能干扰的问题,发现性能干扰是由于内存过载、带宽竞争等GPU资源分配不均导致的,为此设计并实现了快速预测作业间性能干扰的机制,该预测机制能够根据给定的GPU参数和作业类型自适应地预测作业干扰程度。首先,通过实验获取分布式机器学习作业运行时的GPU参数和干扰率,并分析出各类参数对性能干扰的影响;其次,依托多种预测技术建立GPU参数-干扰率模型进行作业干扰率误差分析;最后,建立自适应的作业干扰率预测算法,面向给定的设备环境和作业集合自动选择误差最小的预测模型,快速、准确地预测作业干扰率。选取5种常用的神经网络作业,在两种GPU设备上设计实验并进行结果分析。结果显示,所提出的自适应干扰预测(AIP)机制能够在不提供任何预先假设信息的前提下快速完成预测模型的选择和性能干扰预测,耗时在300 s以内,预测干扰率误差在2%~13%,可应用于作业调度和负载均衡等场景。
针对如何利用商品的多模态信息提高序列推荐算法准确性的问题,提出一种基于对比学习技术的多模态序列推荐算法。该算法首先通过改变商品颜色和截取商品图片中心区域等手段进行数据增强,并把增强后的数据与原数据进行对比学习,以提取到商品的颜色和形状等视觉模态信息;其次对商品的文本模态信息进行低维空间嵌入,从而得到商品多模态信息的完整表达;最后根据商品的时序性,采用循环神经网络(RNN)建模多模态信息的序列交互特征,得到用户的偏好表达,从而进行商品推荐。在两个公开的数据集上进行实验测试的结果表明,与现有的序列推荐算法LESSR相比,所提算法排序性能有所提升,且该算法在特征维度值到达50后,推荐性能基本保持不变。
随着人工智能(AI)算力向网络边缘甚至终端设备扩散,端边云超协同的算力网络成为最佳计算解决方案,而新机遇催生了端边云超计算和网络之间的深度集成。然而,集成系统的完整开发还没有得到很好的解决,包括适应性、灵活性和价值性,因此提出了一种区块链赋能的端边云超算力网络架构。其中,端边云超融合为框架提供基础设施,该设施构成的算力资源池为用户提供安全可靠的算力,网络通过调度资源满足用户需求,而框架内的神经网络和执行平台为AI任务执行提供接口;同时,区块链保证资源交易的可靠性,以激励更多算力贡献者加入平台。本框架为算力网络中的用户提供了适应性,为组网算力资源调度提供了灵活性,为算力供应商提供了价值激励,并利用案例清晰地描述了该新型算力网络架构。
针对造假成本低、不易察觉的音频场景声替换的造假样本检测问题,提出了基于ResNet的造假样本检测算法。该算法首先提取音频的常数Q频谱系数(CQCC)特征,之后由残差网络(ResNet)结构学习输入的特征,结合网络的多层的残差块以及特征归一化,最后输出分类结果。在TIMIT和Voicebank数据库上,所提算法的检测准确率最高可达100%,错误接收率最低仅为1.37%。在现实场景下检测由多种不同录音设备录制的带有设备本底噪声以及原始场景声音频,该算法的检测准确率最高可达99.27%。实验结果表明,在合适的模型下利用音频的CQCC特征来检测音频的场景替换痕迹是有效的。
在无线联邦学习(FL)的架构中,用户端与服务器端之间需要持续交换模型参数数据来实现模型的更新,因此会对用户端造成较大的通信开销和功率消耗。目前已经有多种通过数据量化以及数据稀疏化来降低通信开销的方法。为了进一步降低通信开销,提出了一种基于1?bit压缩感知的无线FL算法。在无线FL架构的上行链路中,这种算法首先在用户端记录其本地模型数据的更新参数,包括更新幅值和趋势;接着对幅值和趋势信息进行稀疏化,并确定更新所需的阈值;最后对更新趋势信息进行1?bit压缩感知,从而压缩上行数据。在此基础上,通过设置动态阈值的方法进一步压缩数据大小。在MNIST数据集上的实验结果表明:引入动态阈值的1?bit压缩感知过程能够获得与无损传输过程相同的效果,在FL应用的上行通信过程中能将用户端需要传输的模型参数数据量降低至不采用该方法的标准FL过程的1/25;而在全局模型训练到相同水平时,能将用户上传数据总大小降低至原来的2/11,将传输能耗降低至原来的1/10。
在移动边缘计算(MEC)中,计算资源和电池容量有限的移动设备(MD)可卸载自身计算密集型应用到边缘服务器上执行,这样不仅可以提高MD计算能力,也能降低能耗。然而,不合理的任务卸载决策不但会延长应用完成时间,而且会大量增加能耗,进而降低用户体验。鉴于此,首先分析MD的移动性和任务间的顺序依赖关系,建立动态MEC网络下的以应用完成时间和能源消耗最小为优化目标的多目标任务卸载问题模型;然后,设计求解该问题的马尔可夫决策过程(MDP)模型,包括状态空间、动作空间和奖励函数,并提出基于深度Q网络(DQN)的多目标任务卸载算法(MTOA-DQN),该算法采用一条轨迹作为经验池的最小单元来改进原始的DQN算法。在多种测试场景下,MTOA-DQN的性能在累积奖励和Cost方面均优于三种对比算法(基于分解的多目标进化算法(MOEA/D)、自适应的DAG任务调度算法(ADTS)和原始的DQN算法),验证了该算法的有效性和可靠性。
布隆过滤器(BF)是一种基于哈希策略的二进制向量数据结构,凭借分摊哈希碰撞的思想、存在单向误判性的特点以及极小常数查询时间复杂度,常用于表示集合元素并作为进行集合元素查询操作的“加速器”。作为计算机工程中解决集合元素查询问题最好的数学工具,BF在网络工程、存储系统、数据库、文件系统、分布式系统等领域得到了广泛的应用和发展。近几年来,为了适用于各种硬件环境和应用场景,BF出现了大量基于改变结构、优化算法等思想的变种方案。随着大数据时代的发展,对BF自身特点和操作逻辑进行改进已经成为现有集合元素查询研究的一个重要方向。
近年来,有研究提出了使用多个定制且可拉伸的射频识别(RFID)标签进行语音识别的无线平台,但该标签难以精准捕捉拉伸引起的大频率偏移,而且需要探测多个标签,标签脱落或自然磨损时还须重新校准。针对以上问题,提出基于单标签RFID的唇语识别算法,将灵活、易于隐藏且没有侵入性的单个通用RFID标签贴在脸上,即使用户不发出声音,仅依靠面部的微动作也可进行唇语识别。首先建立模型处理RFID阅读器接收的单个标签随时间和频率响应的接收信号强度(RSS)和相位变化,然后采用高斯函数对原始数据的噪点进行平滑去噪预处理,再采用动态时间规整(DTW)算法对收集到的信号特征进行评估分析,以解决发音长短不匹配的问题;最后创建无线语音识别系统来识别区分与声音相对应的面部表情,从而达到识别唇语的目的。实验结果表明,对于识别不同用户的200组数字信号特征,该方法的RSS准确率可以达到86.5%以上。
针对目前已有的基于深度学习的恶意代码检测方法提取特征不足和准确率低的问题,提出一种基于注意力机制和残差网络(ResNet)的恶意代码检测方法ARMD。为了支持该方法的训练,从Kaggle网站获取了47 580个恶意和良性代码的Hash值,并利用VirusTotal分析工具提取每个代码数据调用的API,在此之后将所调用的API整合为1 000个不重复的API作为检测的特征来构造训练样本数据;然后根据VirusTotal的分析结果进行良恶性判定进而标记样本数据,并采用SMOTE增强算法使数据样本均衡化;最后构建并训练注入注意力机制的ResNet,从而实现恶意代码检测。实验结果表明ARMD的恶意代码检测准确率为97.76%,且与目前已有的基于卷积神经网络(CNN)和ResNet模型的检测方法相比,平均精确率至少提高了2个百分点,验证了ARMD的有效性。
基于启发式和机器学习的代码坏味检测方法已被证明具有一定的局限性,且现有的检测方法大多集中在较为常见的代码坏味上。针对这些问题,提出了一种深度学习方法来检测过紧的耦合、分散的耦合和散弹式修改这三种与耦合度相关检测较为少见的代码坏味。首先,提取三种代码坏味需要的度量并对得到的数据进行处理;之后,构建卷积神经网络(CNN)与注意力(Attention)机制相结合的深度学习模型,引入的注意力机制可以对输入的度量特征进行权重的分配。从21个开源项目中提取数据集,在10个开源项目中对检测方法进行了验证,并与CNN模型进行对比。实验结果表明:过紧的耦合和分散的耦合在所提模型中取得了更好的结果,相应代码坏味的查准率分别达到了93.61%和99.76%;而散弹式修改在CNN模型中有更好的结果,相应代码坏味查准率达到了98.59%。
渗透测试的核心问题是渗透测试路径的规划,手动规划依赖测试人员的经验,而自动生成渗透路径主要基于网络安全的先验知识和特定的漏洞或网络场景,所需成本高且缺乏灵活性。针对这些问题,提出一种基于强化学习的渗透路径推荐模型QLPT,通过多回合的漏洞选择和奖励反馈,最终给出针对渗透对象的最佳渗透路径。在开源靶场的渗透实验结果表明,与手动测试的渗透路径相比,所提模型推荐的路径具有较高一致性,验证了该模型的可行性与准确性;与自动化渗透测试框架Metasploit相比,该模型在适应所有渗透场景方面也更具灵活性。
保障消息传输的机密性是对车载自组网(VANET)中通信的基本安全需求。在使用对称群组密钥加密消息的模式下,系统管理者难以追踪内部攻击者,因此,提出了基于属性的车载自组网加密方案。该方案能实现对恶意车辆的追踪和撤销,并能细粒度地划分车辆的访问权限;与此同时,该方案允许多个授权中心彼此独立地分发属性及其对应密钥,防止被妥协的授权中心伪造其他授权中心负责管理的属性密钥,从而保障了多机构间通信协作的高度安全性。该方案在q-DPBDHE2假设下被证明具有不可区分性;而且与同类方案进行加解密开销对比的实验结果表明,当涉及的属性个数为10时,该方案的解密开销为459.541 ms,说明该方案适用于车载自组网中的通信加密。
水位预测是防洪预警工作的辅助决策支持。为了进行准确的水位预测,为预防自然灾害提供科学依据,提出一种结合改进的灰狼优化(MGWO)算法与时域卷积网络(TCN)的预测模型MGWO-TCN。针对标准灰狼优化(GWO)算法存在早熟停滞的不足引入差分进化(DE)算法,扩展灰狼种群的多样性;改进灰狼种群更新时的收敛因子和变异时的变异算子,以自适应的形式对参数进行调整,提升算法的收敛速度,均衡算法的全局与局部搜索能力;利用MGWO算法对TCN的重要参数寻优,提升TCN的预测性能。将MGWO-TCN预测模型用于河流水位预测,预测结果的均方根误差(RMSE)为0.039。实验结果表明,与对比模型相比,MGWO-TCN预测模型具有更好的寻优能力和更高的预测精度。
精细化短时交通流预测是保证智能交通系统(ITS)合理决策的前提。为了建立无人驾驶汽车换道模型、预测车辆轨迹、引导车辆出行,及时为每条车道预测车流量成为亟须解决的问题,然而精细化短时交通流预测面临着以下挑战:一是交通流数据日益多元化,传统预测方法难以满足ITS高精度、短时延的要求;二是为每条车道训练预测模型会造成大量的资源浪费。针对以上问题,提出利用卷积-门控循环单元(Conv-GRU)结合灰色关联度分析法(GRA)建立精细化短时交通流预测模型预测车道流量。考虑到深度学习训练时间长、推理时间相对较短的特点,提出云-雾部署方案;同时,为避免为每条车道训练预测模型,在云-雾部署方案的基础上提出了模型迁移部署方案,该方案仅需训练部分车道的预测模型,然后通过GRA将训练好的预测模型迁移部署到关联车道进行预测。对真实交通流数据集进行大量对比实验的结果表明:与传统深度学习预测方法相比,所提模型拥有更精准的预测性能,与卷积-长短期记忆(Conv-LSTM)网络相比在提高精度的基础上运行时间更短,且能在保证高精度预测的情况下实现模型迁移,比训练每条车道的预测模型节省了约49%的训练时间。
针对加密前预留空间(RRBE)嵌入算法需要进行一系列的预处理工作,以及加密后腾出空间(VRAE)嵌入算法嵌入空间较小的缺点,为了在提高嵌入率的同时缩减算法流程和减少工作量,提出一种基于多目标优化的加密图像可逆信息隐藏算法。该算法将RRBE与VRAE中两个具有代表性的算法在同一载体中结合使用,并以信息嵌入量、直接解密图像失真、提取错误率、计算复杂度等性能评价指标作为优化子目标,再利用功效系数法建立模型求解出两种算法应用比例的相对最优解。实验结果表明,所提算法不仅能够降低单独使用RRBE算法的计算复杂度,还能使图像处理用户够根据实际应用场景中不同的需求灵活地分配优化目标,同时也能获得较好的图像质量和令人满意的信息嵌入量。
移动边缘计算(MEC)的出现使移动用户能够以低延迟访问部署在边缘服务器上的服务。然而,MEC仍然存在各种挑战,尤其是服务部署问题。边缘服务器的数量和资源通常是有限的,只能部署数量有限的服务;此外,用户的移动性改变了不同服务在不同地区的流行度。在这种情况下,为动态请求部署合适的服务就成为一个关键问题。针对该问题,通过了解动态用户请求来部署适当的服务以最小化交互延迟,将服务部署问题表述为一个全局优化问题,并提出了一种基于集群划分的资源聚合算法,从而在计算、带宽等资源约束下初步部署合适的服务。此外,考虑动态用户请求对服务流行度及边缘服务器负载的影响,开发了动态调整算法来更新现有服务,以确保服务质量(QoS)始终满足用户期望。通过一系列仿真实验验证了所提出策略的性能。仿真结果表明,与现有基准算法相比,所提出的策略可以降低服务交互延迟并实现更稳定的负载均衡。