《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (6): 1762-1769.DOI: 10.11772/j.issn.1001-9081.2021061390
所属专题: 2021年全国开放式分布与并行计算学术年会(DPCS 2021)论文
• 2021年全国开放式分布与并行计算学术年会(DPCS 2021)论文 • 上一篇 下一篇
收稿日期:
2021-08-03
修回日期:
2021-08-31
接受日期:
2021-10-15
发布日期:
2022-01-10
出版日期:
2022-06-10
通讯作者:
牛强
作者简介:
张瑛琪(1996—),女,辽宁营口人,硕士研究生,CCF会员,主要研究方向:物联网、无线感知基金资助:
Yingqi ZHANG, Dawei PENG, Sen LI, Ying SUN, Qiang NIU()
Received:
2021-08-03
Revised:
2021-08-31
Accepted:
2021-10-15
Online:
2022-01-10
Published:
2022-06-10
Contact:
Qiang NIU
About author:
ZHANG Yingq,born in 1996,M. S. candidate. Her research interests include Internet of Things,wireless sensingSupported by:
摘要:
近年来,有研究提出了使用多个定制且可拉伸的射频识别(RFID)标签进行语音识别的无线平台,但该标签难以精准捕捉拉伸引起的大频率偏移,而且需要探测多个标签,标签脱落或自然磨损时还须重新校准。针对以上问题,提出基于单标签RFID的唇语识别算法,将灵活、易于隐藏且没有侵入性的单个通用RFID标签贴在脸上,即使用户不发出声音,仅依靠面部的微动作也可进行唇语识别。首先建立模型处理RFID阅读器接收的单个标签随时间和频率响应的接收信号强度(RSS)和相位变化,然后采用高斯函数对原始数据的噪点进行平滑去噪预处理,再采用动态时间规整(DTW)算法对收集到的信号特征进行评估分析,以解决发音长短不匹配的问题;最后创建无线语音识别系统来识别区分与声音相对应的面部表情,从而达到识别唇语的目的。实验结果表明,对于识别不同用户的200组数字信号特征,该方法的RSS准确率可以达到86.5%以上。
中图分类号:
张瑛琪, 彭大卫, 李森, 孙莹, 牛强. 基于单标签射频识别的唇语识别算法[J]. 计算机应用, 2022, 42(6): 1762-1769.
Yingqi ZHANG, Dawei PENG, Sen LI, Ying SUN, Qiang NIU. Lip language recognition algorithm based on single-tag radio frequency identification[J]. Journal of Computer Applications, 2022, 42(6): 1762-1769.
数据集 | 性别 | 语速 | 准确率/% | |
---|---|---|---|---|
相位 | RSS | |||
混合数据 | 75.1 | 82.8 | ||
用户A | 女 | 较快 | 86.0 | 93.5 |
用户B | 女 | 较慢 | 79.5 | 95.0 |
用户C | 男 | 中 | 79.0 | 93.5 |
用户D | 男 | 较快 | 78.5 | 86.5 |
用户E | 男 | 较慢 | 67.0 | 87.0 |
表1 各用户的相位和RSS准确率
Tab. 1 Accuracy of each user with Phase and RSS
数据集 | 性别 | 语速 | 准确率/% | |
---|---|---|---|---|
相位 | RSS | |||
混合数据 | 75.1 | 82.8 | ||
用户A | 女 | 较快 | 86.0 | 93.5 |
用户B | 女 | 较慢 | 79.5 | 95.0 |
用户C | 男 | 中 | 79.0 | 93.5 |
用户D | 男 | 较快 | 78.5 | 86.5 |
用户E | 男 | 较慢 | 67.0 | 87.0 |
1 | PETAJAN E D. Automatic lipreading to enhance speech recognition (speech reading)[D]. Champaign, IL: University of Illinois at Urbana-Champaign, 1984: 4-23. |
2 | PETAJAN E, BISCHOFF B, BODOFF D, et al. An improved automatic lipreading system to enhance speech recognition[C]// Proceedings of the 1988 SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 1988: 19-25. 10.1145/57167.57170 |
3 | BAI Z X, ZHANG X L. Speaker recognition based on deep learning: an overview[J]. Neural Networks, 2021, 140: 65-99. 10.1016/j.neunet.2021.03.004 |
4 | HONMA N, TODA K, TSUNEKAWA Y. DoA estimation technique of back-scattering signal from RFID for gesture recognition[C]// Proceedings of the 2015 9th European Conference on Antennas and Propagation. Piscataway:IEEE, 2015: 1-2. |
5 | LIU J, CHEN X Y, CHEN S G, et al. TagSheet: sleeping posture recognition with an unobtrusive passive tag matrix[C]// Proceedings of the 2019 IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 874-882. 10.1109/infocom.2019.8737599 |
6 | XIE L, YIN Y F, VASILAKOS A V, et al. Managing RFID data: challenges, opportunities and solutions[J]. IEEE Communications Surveys and Tutorials, 2014, 16(3): 1294-1311. 10.1109/surv.2014.022614.00143 |
7 | WANG J X, PAN C F, JIN H J, et al. RFID tattoo: a wireless platform for speech recognition[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(4): No.155. 10.1145/3369812 |
8 | WANG J, ABARI O, KESHAV S. Challenge: RFID hacking for fun and profit[C]// Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2018: 461-470. 10.1145/3241539.3241561 |
9 | YEAGER D J, HOLLEMAN J, PRASAD R, et al. NeuralWISP: a wirelessly powered neural interface with 1-m range[J]. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(6): 379-387. 10.1109/tbcas.2009.2031628 |
10 | YANG L, CHEN Y K, LI X Y, et al. Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices[C]// Proceedings of the 20th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2014: 237-248. 10.1145/2639108.2639111 |
11 | PRADHAN S, CHAI E, SUNDARESAB K, et al. RIO: a pervasive RFID-based touch gesture interface[C]// Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking. New York: ACM, 2017: 261-274. 10.1145/3117811.3117818 |
12 | HA U, MA Y F, ZHONG Z X, et al. Learning food quality and safety from wireless stickers[C]// Proceedings of the 17th ACM Workshop on Hot Topics in Networks. New York: ACM, 2018: 106-112. 10.1145/3286062.3286078 |
13 | STERPU G, SAAM C, HARTE N. Attention-based audio-visual fusion for robust automatic speech recognition[C]// Proceedings of the 20th ACM International Conference on Multimodal Interaction. New York: ACM, 2018: 111-115. 10.1145/3242969.3243014 |
14 | AGRAWAL S, OMPRAKASH V R, RANVIJAY. Lip reading techniques: a survey[C]// Proceedings of the 2nd International Conference on Applied and Theoretical Computing and Communication Technology. Piscataway: IEEE, 2016: 753-757. 10.1109/icatcct.2016.7912100 |
15 | ASSAEL Y M, SHILLINGFORD B, WHITESON S, et al. LipNet: sentence-level lipreading[EB/OL]. (2016-11-05) [2021-05-19]. . |
16 | BEDRI A, SAHNI H, THUKRAL P, et al. Toward silent-speech control of consumer wearables[J]. Computer, 2015, 48(10):54-62. 10.1109/mc.2015.310 |
17 | BRIGHAM K, KUMAR B V K V. Imagined speech classification with EEG signals for silent communication: a preliminary investigation into synthetic telepathy[C]// Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering. Piscataway: IEEE, 2010: 1-4. 10.1109/icbbe.2010.5515807 |
18 | CHUNG J S, ZISSERMAN A. Lip reading in the wild[C]// Proceedings of the 2016 Asian Conference on Computer Vision, LNIP 10112. Cham: Springer, 2017: 87-103. |
19 | CHUNG J S, ZISSERMAN A. Out of time: automated lip sync in the wild[C]// Proceedings of the 2016 Asian Conference on Computer Vision, LNIP 10117. Cham: Springer, 2017: 251-263. |
20 | WAND M, KOUTNÍK J, SCHMIDHUBER J. Lipreading with long short-term memory[C]// Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2016: 6115-6119. 10.1109/icassp.2016.7472852 |
21 | DOBKIN D M. The RF in RFID: UHF RFID in Practice[M]. 2nd ed. Waltham, MA: Newnes, 2013: 306-314. 10.1016/b978-0-12-394583-9.00005-3 |
22 | COHEN K, LESHEM A. Distributed game-theoretic optimization and management of multichannel ALOHA networks[J]. IEEE/ACM Transactions on Networking, 2016, 24(3): 1718-1731. 10.1109/tnet.2015.2431121 |
23 | XIE B B, XIONG J, CHEN X J, et al. Tagtag: material sensing with commodity RFID[C]// Proceedings of the 17th Conference on Embedded Networked Sensor Systems. New York: ACM, 2019: 338-350. 10.1145/3356250.3360027 |
24 | YANG L, LI Y, LIN Q Z, et al. Making sense of mechanical vibration period with sub-millisecond accuracy using backscatter signals[C]// Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking. New York: ACM, 2016: 16-28. 10.1145/2973750.2973759 |
[1] | 邱莲鹏, 宋承云. 噪声鲁棒的动态时间规整算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1855-1860. |
[2] | 刘长庚, 刘亚丽, 陆琪鹏, 李涛, 林昌露, 祝义. 抵抗物理克隆攻击的车载遥控门锁双因子认证协议[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3375-3384. |
[3] | 秦晓, 成苗, 张绍兵, 何莲, 石向文, 王品学, 曾尚. 工业场景下基于秩信息对YOLOv4的剪枝[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1417-1423. |
[4] | 吴恺凡, 殷新春. 基于随机运算符的轻量级匿名射频识别系统双向认证协议[J]. 计算机应用, 2021, 41(6): 1621-1630. |
[5] | 沈忱, 邰凌翔, 彭煜玮. 面向自动参数调优的动态负载匹配方法[J]. 计算机应用, 2021, 41(3): 657-661. |
[6] | 刘艳, 张玉. 基于Logistic映射的射频识别防碰撞算法[J]. 计算机应用, 2020, 40(8): 2334-2339. |
[7] | 夏伦腾, 张莉. 基于K近邻和动态时间规整算法的盲人物联网手杖系统[J]. 计算机应用, 2020, 40(8): 2441-2448. |
[8] | 徐晓翔, 常相茂, 陈方进. 基于RFID标签阵列的睡眠期间呼吸量连续监测系统[J]. 计算机应用, 2020, 40(5): 1534-1538. |
[9] | 刘帅, 刘长良, 甄成刚. 风电机组齿轮箱的多变量时间序列故障预警[J]. 计算机应用, 2019, 39(4): 1229-1233. |
[10] | 黄可可, 刘亚丽, 殷新春. 基于位重排变换的超轻量级RFID双向认证协议[J]. 计算机应用, 2019, 39(1): 118-125. |
[11] | 丁建立, 穆涛, 王怀超. 基于谱回归核判别分析的候机楼室内快速定位算法[J]. 计算机应用, 2019, 39(1): 256-261. |
[12] | 李强, 于凤芹. 改进音高轮廓创建和选择的旋律提取算法[J]. 计算机应用, 2018, 38(8): 2411-2415. |
[13] | 汪明, 许亮, 何小敏. 无线传感器网络精度优选RSSI协作定位算法[J]. 计算机应用, 2018, 38(7): 1981-1988. |
[14] | 王帅, 杨晓东. 基于序贯线性贝叶斯的RFID标签数量估计算法[J]. 计算机应用, 2018, 38(11): 3287-3292. |
[15] | 谢小雨, 刘喆颉. 基于肌电信号和加速度信号的动态手势识别方法[J]. 计算机应用, 2017, 37(9): 2700-2704. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||