知识表示学习目的是将知识图谱中符号化表示的关系与实体嵌入到低维连续向量空间。知识表示模型在训练过程中需要大量负样本,但多数知识图谱只以三元组的形式存储正样本。传统知识表示学习方法中通常使用负采样方法,这种方法生成的负样本很容易被模型判别,随着训练的进行对性能提升的贡献也会越来越小。为了解决这个问题,提出了对抗式负样本生成器(ANG)模型。生成器采用编码-解码架构,编码器读入头或尾实体被替换的正样本作为上下文信息,然后解码器利用编码器提供的编码信息为三元组填充被替换的实体,从而构建负样本。训练过程采用已有的知识表示学习模型与生成器进行对抗训练以优化知识表示向量。在链接预测和三元组分类任务上评估了该方法,实验结果表明该方法对已有知识表示学习模型在FB15K237、WN18和WN18RR数据集上的链接预测平均排名与三元组分类准确度都有提升。