[1] RIVIERE P J L, VARGAS P, FU G. et al. Accelerating X-ray fluorescence computed tomography[C]//Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ:IEEE, 2009:1000-1003.
[2] PELEDS, YESHURUNY. Superresolution in MRI:application to human white matter fiber tract visualization by diffusion tensor imaging[J]. Magnetic Resonance in Medicine, 2001, 45(1):29-35.
[3] SUBBARAO M. High-sensitivity Single-Photon Emission Computed Tomography (SPECT):safer, faster, and more accurate SPECT[C]//Proceedings of the 8th International Conference and Expo on Emerging Technologies for a Smarter World. Piscataway, NJ:IEEE, 2011:1-2.
[4] PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction:a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3):21-36.
[5] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:105-114.
[6] JOHNSON J, ALAHI A, LI F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Berlin:Springer, 2016:694-711.
[7] 苏衡,周杰,张志浩.超分辨率图像重建方法综述[J].自动化学报,2013,39(8):1202-1213.(SU H, ZHOU J, ZHANG Z H. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8):1202-1213.)
[8] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 29(6):1153-1160.
[9] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing,2010,19(11):2861-2873.
[10] DONG C, LOY C C, HE K. et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307.
[11] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2017:1132-1440.
[12] YU J, FAN Y, YANG J, et al. Wide activation for efficient and accurate image super-resolution[EB/OL].[2019-01-23]. https://arxiv.org/pdf/1808.08718v1.pdf.
[13] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:1800-1807.
[14] WU Y, HE K. Group normalization[EB/OL].[2018-12-12]. https://arxiv.org/pdf/1803.08494.pdf.
[15] SIFRE L, MALLAT S. Rotation, scaling and deformation invariant scattering for texture discrimination[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2013:1233-1240.
[16] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2019-01-10]. https://arxiv.org/pdf/1502.03167.pdf.
[17] NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:257-265.
[18] BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL].[2019-01-20]. https://arxiv.org/pdf/1607.06450.pdf.
[19] SALIMANS T, KIMGMA D P. Weight normalization:a simple reparameterization to accelerate training of deep neural networks[C]//Proceedings of the 30th Neural Information Processing Systems. New York:NIPS, 2016:901-909.
[20] RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf:an astounding baseline for recognition[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2014:512-519. |