[1]SRIKANT R, AGRAWAL R. Mining quantitative association rules in large relational tables [C]// Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1996: 1-12.
[2]CATLETT J. On changing continuous attributes into ordered discrete attributes [C]// Proceedings of the European Working Session on Learning on Machine Learning, LNCS 482. Berlin: Springer, 1991: 164-178.
[3]MEHTA S, PARTHASARATHY S, YANG H. Toward unsupervised correlation preserving discretization [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(9): 1174-1185.
[4]KERBER R. ChiMerge: discretization of numeric attributes [C]// Proceedings of the Tenth National Conference on Artificial Intelligence. Menlo Park: AAAI Press, 1992: 123-128.
[5]LIU H, SETIONO R. Chi2: feature selection and discretization of numeric attributes [C]// Proceedings of the Seventh IEEE International Conference on Tools with Artificial Intelligence. Washington, DC: IEEE Computer Society, 1995: 388-391.
[6]YANG Y, WEBB G I. Discretization for naive-Bayes learning: managing discretization bias and variance [J]. Machine Learning, 2009, 74(1): 39-74.
[7]RUIZ F J, ANGULO C, AGELL N. IDD: a supervised interval distance-based method for discretization [J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(9): 1230-1238.
[8]DOUGHERTY J, KOHAVI R, SAHAMI M. Supervised and unsupervised discretization of continuous features [C]// Proceedings of the Twelfth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1995: 194-202.
[9]LI G. An unsupervised discretization algorithm based on mixture probabilistic model [J]. Chinese Journal of Computers, 2002, 25(2): 158-164.(李刚.基于混合概率模型的无监督离散化算法[J].计算机学报,2002,25(2):158-164.)
[10]KURGAN L A, CIOS K J. CAIM discretization algorithm [J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(2): 145-153.
[11]TSAI C J, LEE C I, YANG W. A discretization algorithm based on class-attribute contingency coefficient [J]. Information Sciences, 2008, 178(3): 714-731.
[12]SCHMIDBERGER G, FRANK E. Unsupervised discretization u-sing tree-based density estimation [C]// PKDD 2005: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, LNCS 3721. Berlin: Springer, 2005: 240-251.
[13]BIBA M, ESPOSITO F, FERILLI S, et al. Unsupervised discretization using kernel density estimation [C]// Proceedings of the 20th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 2007: 697-701.
[14]BORIAH S, CHANDOLA V, KUMAR V. Similarity measures for categorical data: a comparative evaluation [C]// Proceedings of the 8th SIAM International Conference on Data Mining. Philadelphia: SIAM, 2008: 243-254.
[15]ZHANG S, WONG H S, SHEN Y. Generalized adjusted rand indices for cluster ensembles [J]. Pattern Recognition, 2012, 45(6): 2214-2226.
[16]NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm [C]// Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2002: 849-856.
[17]THEODORIDIS S, KOUTROUMBAS K. Pattern recognition [M]. Waltham: Academic Press, 2003. |