Journal of Computer Applications ›› 2014, Vol. 34 ›› Issue (9): 2577-2580.DOI: 10.11772/j.issn.1001-9081.2014.09.2577
• Artificial intelligence • Previous Articles Next Articles
ZHANG Danpu1,2,WANG Lili1,2,FU Zhongliang1,LI Xin1,2
Received:
2014-04-02
Revised:
2014-06-08
Online:
2014-09-30
Published:
2014-09-01
Contact:
ZHANG Danpu
张丹普1,2,王莉莉1,2,付忠良1,李昕1,2
通讯作者:
张丹普
作者简介:
基金资助:
四川省科技支撑计划项目
CLC Number:
ZHANG Danpu WANG Lili FU Zhongliang LI Xin. Ensemble learning algorithm for labels matching based on pairwise labelsets[J]. Journal of Computer Applications, 2014, 34(9): 2577-2580.
张丹普 王莉莉 付忠良 李昕. 基于双标签集的标签匹配集成学习算法[J]. 计算机应用, 2014, 34(9): 2577-2580.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2014.09.2577
[1]TSOUMAKAS G, KATAKIS I. Multi-label classification: an overview [J]. International Journal of Data Warehousing and Mining, 2007, 3(3): 1-13.
[2]BOUTELL M R, LUO J, SHEN X, et al.Learning multi-label scene classification [J]. Pattern Recognition, 2004, 37(9): 1757-1771.
[3]〖CM(27〗FRNKRANZ J, HLLERMEIER E, LOZA MENCA E, et al.〖WTBZ〗 Multilabel classification via calibrated label ranking [J]. Machine Learning, 2008, 73(2): 133-153.
[4]TSOUMAKAS G, VLAHAVAS I. Random k-labelsets: an ensemble method for multilabel classification[C]// ECML 2007: Proceedings of the 18th European Conference on Machine Learning, LNCS 4701. Berlin: Springer-Verlag, 2007: 406-417.
[5]ZHANG M L, ZHOU Z H. A k-nearest neighbor based algorithm for multi-label classification [C] // Proceedings of the 2005 IEEE International Conference on Granular Computing. Piscataway: IEEE, 2004, 2: 718-721.
[6]ELISSEEFF A, WESTON J. A kernel method for multi-labeled classification [C] // NIPS 02: Proceedings of Advances in Neural Processing Systems. Cambridge: MIT Press, 2002: 681-687.
〖BP(〗http://cse.seu.edu.cn/people/zhangml/Resources.htm
http://cse.seu.edu.cn/people/zhangml/files/NIPS02.pdf〖BP)〗
[7]SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions [J]. Machine Learning, 1999, 37(3): 297-336.
[8]SCHAPIRE R E, SINGER Y. Boostexter: a boosting based system for text categorization [J]. Machine Learning, 2000, 39(2/3): 135-168.
[9]ZHANG M-L, ZHANG K. Multi-label learning by exploiting label dependency[C] // KDD'10: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 999-1007.
[10]DEMBCZYNSKI K, WAEGEMAN W, CHENG W, et al.On label dependence in multi-label classification[C] // Proceedings of the 2nd International Workshop on Learning from Multi-Label Data. Haifa: [s.n.], 2010: 5-12.
〖BP(〗http://www.weiweicheng.com/research/papers/cheng-icml10mld.pdf〖BP)〗
[11]HUANG S-J, ZHOU Z-H. Multi-label learning by exploiting label correlations locally[C] // Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2012: 949-955.
[12]Mulan: a Java library for multi-label learning [EB/OL]. [2014-01-16]. http://mulan.sourceforge.net/datasets.html.
[13]ZHANG M-L. Data sets used in multi-instance learning [EB/OL]. [2013-12-05]. http://cse.seu.edu.cn/people/zhangml/Resources.htm#data.[14]FU Z. Cost-sensitive AdaBoost algorithm for multi-class classification problems [J]. Acta Automatica Sinica, 2011, 37(8): 973-983. (付忠良.多分类问题代价敏感AdaBoost算法[J]. 自动化学报, 2011, 37(8):973-983.)
[15]FU Z. An ensemble learning algorithm for direction prediction [J]. Shanghai Jiaotong University, 2012, 46(2): 250-258. (付忠良.一种用于方向预测的集成学习算法[J]. 上海交通大学学报, 2012, 46(2): 250-258.)
[16]TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Mining multi-label data[M]// Data Mining and Knowledge Discovery Handbook. Berlin: Springer-Verlag, 2010: 667-686.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||