Journal of Computer Applications ›› 2014, Vol. 34 ›› Issue (9): 2590-2594.DOI: 10.11772/j.issn.1001-9081.2014.09.2590
• Artificial intelligence • Previous Articles Next Articles
CHAI Ruimin1,CAO Zhenji2
Received:
2014-03-31
Revised:
2014-05-26
Online:
2014-09-30
Published:
2014-09-01
Contact:
CAO Zhenji
柴瑞敏1,曹振基2
通讯作者:
曹振基
作者简介:
CLC Number:
CHAI Ruimin CAO Zhenji. Face recognition algorithm based on Gabor wavelet and deep belief networks[J]. Journal of Computer Applications, 2014, 34(9): 2590-2594.
柴瑞敏 曹振基. 基于Gabor小波与深度信念网络的人脸识别方法[J]. 计算机应用, 2014, 34(9): 2590-2594.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2014.09.2590
[1]PANG Y, YUAN Y, LI X. Gabor-based region covariance matrices for face recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(7): 989-993.
[2]〖CM(27〗DAUGMAN J. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression [J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1988, 16(7):1169-1179.
[3]DUDA R, HART P, STORK D. Pattern classification [M]. New York: John Wiley & Sons, 2000.
[4]LIU C, HARRY W. Independent component analysis of Gabor features for face recognition [J]. IEEE Transactions on Neural Networks, 2003, 14(4): 919-928.
[5]SHEN L, BAI L. Mutual boost learning for selecting Gabor features for face recognition [J]. Pattern Recognition Letters, 2006, 27 (15): 1758-1767.
[6]HU B, WANG Z. A new face recognition based on Gabor wavelets and RBF neural network [J]. Journal of Circuits and Systems, 2008, 13(1):73-78. (胡步发,王忠.基于Gabor小波与RBF神经网络的人脸识别新方法[J].电路与系统学报,2008,13(1):73-78.)
[7]BENGIO Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-12.
[8]BRAVERMAN M. Poly-logarithmic independence fools bounded-depth Boolean circuits [J]. Communications of the ACM, 2011, 54(4): 108-115.
[9]BENGIO Y, LeCUN Y. Scaling learning algorithms towards AI [M]// Large-Scale Kernel Machines. Cambridge: MIT Press, 2007: 1-41.
[10]HINTON G, OSINDERO S, TEH Y. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
[11]LEE H, GROSSE R, RANGANATH R, et al.Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
[12]HUANG G, LEE H, LEARNED-MILLER E. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR 2012: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2518-2525.
[13]BUHMANN J, LANGE J, von der MALSBURG C. Distortion invariant object recognition by matching hierarchically labeled graphs [C]// IJCNN 1989: Proceedings of the 1989 International Joint Conference on Neural Networks. Piscataway: IEEE, 1989, 1: 155-159.
[14]KONG R, ZHANG B. Design of Gabor filters' parameter [J]. Control and Decision,2012, 27(8): 1277-1280. (孔锐,张冰.Gabor滤波器参数设置研究[J].控制与决策,2012,27(8):1277-1280.)
[15]HUBEL D, WIESEL T. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex [J]. Journal of Physiology, 1962, 160(1): 106-154.
[16]HINTON G, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507.
[17]HUANG H, HE H. Super-resolution method for face recognition using nonlinear mappings on coherent features [J]. IEEE Transactions on Neural Networks, 2011, 22(1): 121-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||