[1] VOUK M A. Cloud computing — issues, research and implementations [J]. Journal of Computing and Information Technology, 2004, 16(4):235-246. [2] CHEMAWAT S,GOBIFF H, LEUNG S-T. The Goole file system [C]//SOSP'03: Proceeding of 19th ACM Symposium on Operating System Principles. New York: ACM, 2003: 29-43. [3] BORTHAKUR D. The Hadoop distributed file system: architecture and design [EB/OL]. (2007-07-01) [2014-07-14]. http://hadoop.apache.org/common/docs/r0.18.2/hdfs_design.pdf. [4] HOOPER A. Green computing [J]. Communications of the ACM, 2008, 51(10): 11-13. [5] Global Action Plan. An inefficient truth [R/OL]. [2014-04-20]. http://www.it-energy.co.uk/pdf/GAP%20An%20Inefficient%20Truth%20Dec%202007.pdf. [6] LEVERICH J, KOZYRAKIS C. On the energy in efficiency of Hadoop clusters [J]. ACM SIGOPS Operating Systems Review, 2010,44(1):61-65. [7] WANG Z, YU J, YING C, et al. Energy-efficient strategy for dynamic management of cloud storage replica based on user visiting characteristic [J]. Journal of Computer Applications, 2014, 34(8): 2256-2259. (王政英,于炯,英昌甜,等. 基于用户访问特征的云存储副本动态管理节能策略[J]. 计算机应用,2014,34(8): 2256-2259.) [8] MAHESHWARI N, NANDURI R, VARMA V. Dynamic energy efficient data placement and cluster reconfiguration algorithm for MapReduce framework [J]. Future Generation Computer Systems, 2011, 28(1): 119-127. [9] LIU Q, Todman T, LUK W. Combining optimizations in automated low power design [C]//DATE '10: Proceedings of the Conference on Design, Automation and Test in Europe. Leuven, Belgium: European Design and Automation Association, 2010: 1791-1796. [10] LIN B, LI S, LIAO X, et al. Seadown: SLA-aware size-scaling power management in heterogeneous MapReduce cluster [J]. Chinese Journal of Computers, 2013, 36(5): 977-987. (林彬,李姗姗,廖湘科,等.Seadown:一种异构MapReduce集群中面向SLA的能耗管理方法[J]. 计算机学报,2013,36(5):977-987.) [11] HARNIK D, NAOR D, SEGALL I. Low power mode in cloud storage systems [C]//IPDPS 2009: Proceedings of the IEEE International Symposium on Paraller & Distributed Processing. Piscataway: IEEE, 2009: 1-8. [12] VASIC N, BARISITS M, SALZGEBER V, et al. Making cluster applications energy-aware [C]//ACDC '09: Proceedings of the 1st Workshop on Automated Control for Datacenters and Clouds. New York: ACM, 2009: 37-42. [13] KAUSHIK R T, BHANDARKAR M, NAHRSTEDT K. Evaluation and analysis of GreenHDFS: a self-adaptive, energy conserving variant of the Hadoop distributed file system [C]//Proceedings of the IEEE 2nd International Conference on Cloud Computing Technology and Science. Piscataway: IEEE, 2010: 274-287. [14] KAUSHIK R T, BHANDARKAR M. GreenHDFS: towards an energy-conserving, storage-efficient, hybrid Hadoop compute cluster [C]//HotPower'10: Proceedings of the 2010 International Conference on Power Aware Computing and Systems. Piscataway: IEEE, 2010: Article No. 1-9. [15] LIAO B, YU J, ZHANG T, et al. Energy-efficient algorithms for distributed file system HDFS [J]. Chinese Journal of Computers, 2013,5:1-18. (廖彬,于炯,张陶,等.基于分布式文件系统HDFS的节能算法[J]. 计算机学报,2013,36(5):1047-1064.) [16] MacQUEEN J. Some methods for classification and analysis of multivariate observations [C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967: 281-297. |