Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1713-1718.DOI: 10.11772/j.issn.1001-9081.2022060925
Special Issue: CCF第37届中国计算机应用大会 (CCF NCCA 2022)
• The 37 CCF National Conference of Computer Applications (CCF NCCA 2022) • Previous Articles Next Articles
Jinghuan LAO1, Dong HUANG1(), Changdong WANG2, Jianhuang LAI2
Received:
2022-06-27
Revised:
2022-10-18
Accepted:
2022-10-20
Online:
2022-12-02
Published:
2023-06-10
Contact:
Dong HUANG
About author:
LAO Jinghuan, born in 1996, M. S. candidate. Her research interests include multi-view clustering, large-scale clustering.Supported by:
通讯作者:
黄栋
作者简介:
劳景欢(1996—),女,广东湛江人,硕士研究生,CCF会员,主要研究方向:多视图聚类、大规模聚类基金资助:
CLC Number:
Jinghuan LAO, Dong HUANG, Changdong WANG, Jianhuang LAI. Multi-view ensemble clustering algorithm based on view-wise mutual information weighting[J]. Journal of Computer Applications, 2023, 43(6): 1713-1718.
劳景欢, 黄栋, 王昌栋, 赖剑煌. 基于视图互信息加权的多视图集成聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1713-1718.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060925
数据集 | 视图数 | 样本数 | 类别数 |
---|---|---|---|
3Sources | 3 | 169 | 6 |
Notting-Hill | 3 | 550 | 5 |
Reuters | 5 | 1 200 | 6 |
Mfeat | 3 | 1 200 | 10 |
Caltech-7 | 3 | 1 474 | 7 |
Caltech-20 | 3 | 2 386 | 20 |
Tab.1 Experimental datasets
数据集 | 视图数 | 样本数 | 类别数 |
---|---|---|---|
3Sources | 3 | 169 | 6 |
Notting-Hill | 3 | 550 | 5 |
Reuters | 5 | 1 200 | 6 |
Mfeat | 3 | 1 200 | 10 |
Caltech-7 | 3 | 1 474 | 7 |
Caltech-20 | 3 | 2 386 | 20 |
数据集 | SC-Avg | SC-Best | RMSC | AWP | MCGC | CoMSC | MEC-VMIW |
---|---|---|---|---|---|---|---|
平均得分 | 46.95±0.22 | 51.77±0.33 | 28.23±1.21 | 54.16±0.00 | 26.56±0.00 | 47.33±0.22 | 60.80±3.37 |
3Sources | 45.41±0.48 | 50.01±0.76 | 60.31±1.12 | 62.88±0.00 | 58.72±0.00 | 46.74±0.51 | 68.83±2.52 |
Notting-Hill | 66.80±0.12 | 72.02±0.00 | 40.47±2.09 | 60.63±0.00 | 0.85±0.00 | 54.82±0.00 | 80.64±5.77 |
Reuters | 25.62±0.11 | 27.00±0.21 | 10.60±0.37 | 11.40±0.00 | 9.53±0.00 | 13.21±0.05 | 23.55±4.90 |
Mfeat | 57.56±0.10 | 64.89±0.18 | 23.27±0.71 | 78.26±0.00 | 59.38±0.00 | 70.52±0.17 | 81.92±3.02 |
Caltech-7 | 36.95±0.05 | 40.65±0.01 | 10.95±0.53 | 52.47±0.00 | 0.20±0.00 | 42.70±0.07 | 52.80±2.81 |
Caltech-20 | 49.37±0.45 | 56.04±0.80 | 23.79±2.43 | 59.31±0.00 | 30.66±0.00 | 56.00±0.55 | 57.05±1.21 |
Tab.2 NMI scores of the proposed algorithm and other clustering algorithms
数据集 | SC-Avg | SC-Best | RMSC | AWP | MCGC | CoMSC | MEC-VMIW |
---|---|---|---|---|---|---|---|
平均得分 | 46.95±0.22 | 51.77±0.33 | 28.23±1.21 | 54.16±0.00 | 26.56±0.00 | 47.33±0.22 | 60.80±3.37 |
3Sources | 45.41±0.48 | 50.01±0.76 | 60.31±1.12 | 62.88±0.00 | 58.72±0.00 | 46.74±0.51 | 68.83±2.52 |
Notting-Hill | 66.80±0.12 | 72.02±0.00 | 40.47±2.09 | 60.63±0.00 | 0.85±0.00 | 54.82±0.00 | 80.64±5.77 |
Reuters | 25.62±0.11 | 27.00±0.21 | 10.60±0.37 | 11.40±0.00 | 9.53±0.00 | 13.21±0.05 | 23.55±4.90 |
Mfeat | 57.56±0.10 | 64.89±0.18 | 23.27±0.71 | 78.26±0.00 | 59.38±0.00 | 70.52±0.17 | 81.92±3.02 |
Caltech-7 | 36.95±0.05 | 40.65±0.01 | 10.95±0.53 | 52.47±0.00 | 0.20±0.00 | 42.70±0.07 | 52.80±2.81 |
Caltech-20 | 49.37±0.45 | 56.04±0.80 | 23.79±2.43 | 59.31±0.00 | 30.66±0.00 | 56.00±0.55 | 57.05±1.21 |
数据集 | SC-Avg | SC-Best | RMSC | AWP | MCGC | CoMSC | MEC-VMIW |
---|---|---|---|---|---|---|---|
平均得分 | 35.76±0.30 | 41.54±0.48 | 13.25±0.98 | 45.20±0.00 | 20.50±0.00 | 37.01±0.63 | 53.61±5.21 |
3Sources | 29.62±0.55 | 35.44±0.86 | 45.26±1.35 | 51.84±0.00 | 50.62±0.00 | 45.75±1.00 | 66.13±2.44 |
Notting-Hill | 63.44±0.14 | 73.52±0.00 | 26.22±2.31 | 56.00±0.00 | 0.22±0.00 | 40.52±0.00 | 75.06±11.14 |
Reuters | 19.37±0.10 | 20.46±0.12 | 1.97±0.16 | 2.42±0.00 | 1.64±0.00 | 4.90±0.03 | 16.99±5.98 |
Mfeat | 45.18±0.14 | 55.14±0.25 | 3.94±0.56 | 68.71±0.00 | 49.75±0.00 | 60.04±0.17 | 74.76±5.32 |
Caltech-7 | 28.78±0.05 | 30.11±0.05 | -0.12±0.12 | 50.50±0.00 | -0.41±0.00 | 32.26±0.16 | 49.56±4.51 |
Caltech-20 | 28.17±0.83 | 34.56±1.60 | 2.23±1.38 | 41.71±0.00 | 21.22±0.00 | 38.57±2.41 | 39.18±1.89 |
Tab.3 ARI scores of the proposed algorithm and other clustering algorithms
数据集 | SC-Avg | SC-Best | RMSC | AWP | MCGC | CoMSC | MEC-VMIW |
---|---|---|---|---|---|---|---|
平均得分 | 35.76±0.30 | 41.54±0.48 | 13.25±0.98 | 45.20±0.00 | 20.50±0.00 | 37.01±0.63 | 53.61±5.21 |
3Sources | 29.62±0.55 | 35.44±0.86 | 45.26±1.35 | 51.84±0.00 | 50.62±0.00 | 45.75±1.00 | 66.13±2.44 |
Notting-Hill | 63.44±0.14 | 73.52±0.00 | 26.22±2.31 | 56.00±0.00 | 0.22±0.00 | 40.52±0.00 | 75.06±11.14 |
Reuters | 19.37±0.10 | 20.46±0.12 | 1.97±0.16 | 2.42±0.00 | 1.64±0.00 | 4.90±0.03 | 16.99±5.98 |
Mfeat | 45.18±0.14 | 55.14±0.25 | 3.94±0.56 | 68.71±0.00 | 49.75±0.00 | 60.04±0.17 | 74.76±5.32 |
Caltech-7 | 28.78±0.05 | 30.11±0.05 | -0.12±0.12 | 50.50±0.00 | -0.41±0.00 | 32.26±0.16 | 49.56±4.51 |
Caltech-20 | 28.17±0.83 | 34.56±1.60 | 2.23±1.38 | 41.71±0.00 | 21.22±0.00 | 38.57±2.41 | 39.18±1.89 |
1 | JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666. 10.1016/j.patrec.2009.09.011 |
2 | von LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416. 10.1007/s11222-007-9033-z |
3 | WANG C D, LAI J H, HUANG D, et al. SVStream: a support vector-based algorithm for clustering data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(6): 1410-1424. 10.1109/tkde.2011.263 |
4 | CAI X S, HUANG D, WANG C D, et al. Spectral clustering by subspace randomization and graph fusion for high-dimensional data[C]// Proceedings of the 2020 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 12084. Cham: Springer, 2020: 330-342. |
5 | LIANG Y W, HUANG D, WANG C D. Consistency meets inconsistency: a unified graph learning framework for multi-view clustering[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 1204-1209. 10.1109/icdm.2019.00148 |
6 | CHEN M S, HUANG L, WANG C D, et al. Multi-view clustering in latent embedding space[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 3513-3520. 10.1609/aaai.v34i04.5756 |
7 | ZHANG G Y, ZHOU Y R, WANG C D, et al. Joint representation learning for multi-view subspace clustering [J]. Expert Systems with Applications, 2021, 166: No.113913. 10.1016/j.eswa.2020.113913 |
8 | LIU J L, WANG C, GAO J, et al. Multi-view clustering via joint nonnegative matrix factorization [C]// Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2013: 252-260. 10.1137/1.9781611972832.28 |
9 | NIE F P, TIAN L, LI X L. Multiview clustering via adaptively weighted Procrustes[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 2022-2030. 10.1145/3219819.3220049 |
10 | WANG R, NIE F P, WANG Z, et al. Parameter-free weighted multi-view projected clustering with structured graph learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(10): 2014-2025. 10.1109/tkde.2019.2913377 |
11 | KHAN A, MAJI P. Multi-manifold optimization for multi-view subspace clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3895-3907. 10.1109/tnnls.2021.3054789 |
12 | TANG C, LIU X W, ZHU X Z, et al. CGD: multi-view clustering via cross-view graph diffusion [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 5924-5931. 10.1609/aaai.v34i04.6052 |
13 | 夏冬雪,杨燕,王浩,等. 基于邻域多核学习的后融合多视图聚类算法[J]. 计算机研究与发展, 2020, 57(8):1627-1638. 10.7544/issn1000-1239.2020.20200212 |
XIA D X, YANG Y, WANG H, et al. Late fusion multi-view clustering based on local multi-kernel learning[J]. Journal of Computer Research and Development, 2020, 57(8):1627-1638. 10.7544/issn1000-1239.2020.20200212 | |
14 | 赵博宇,张长青,陈蕾,等. 生成式不完整多视图数据聚类[J]. 自动化学报, 2021, 47(8):1867-1875. 10.16383/j.aas.c200121 |
ZHAO B Y, ZHANG C Q, CHEN L, et al. Generative model for partial multi-view clustering[J]. Acta Automatica Sinica, 2021, 47(8):1867-1875. 10.16383/j.aas.c200121 | |
15 | ZHANG G Y, ZHOU Y R, HE X Y, et al. One-step kernel multi-view subspace clustering[J]. Knowledge-Based Systems, 2020, 189: No.105126. 10.1016/j.knosys.2019.105126 |
16 | CHEN M S, HUANG L, WANG C D, et al. Multiview subspace clustering with grouping effect[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7655-7668. 10.1109/tcyb.2020.3035043 |
17 | LIU J Y, LIU X W, YANG Y X, et al. Multiview subspace clustering via co-training robust data representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(10): 5177-5189. 10.1109/tnnls.2021.3069424 |
18 | ZHANG P, LIU X W, XIONG J, et al. Consensus one-step multi-view subspace clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10): 4676-4689. 10.1109/tkde.2020.3045770 |
19 | ZHANG G Y, WANG C D, HUANG D, et al. TW-Co-k-means: two-level weighted collaborative k-means for multi-view clustering[J]. Knowledge-Based Systems, 2018, 150: 127-138. 10.1016/j.knosys.2018.03.009 |
20 | WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1116-1129. 10.1109/tkde.2019.2903810 |
21 | CHEN M S, HUANG L, WANG C D, et al. Multi-view spectral clustering via multi-view weighted consensus and matrix-decomposition based discretization[C]// Proceedings of the 2019 International Conference on Database Systems for Advanced Applications, LNCS 11446. Cham: Springer, 2019: 175-190. |
22 | HUANG S D, KANG Z, TSANG I W, et al. Auto-weighted multi-view clustering via kernelized graph learning[J]. Pattern Recognition, 2019, 88: 174-184. 10.1016/j.patcog.2018.11.007 |
23 | REN P Z, XIAO Y, XU P F, et al. Robust auto-weighted multi-view clustering[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 2644-2650. 10.24963/ijcai.2018/367 |
24 | HUANG D, LAI J H, WANG C D. Combining multiple clusterings via crowd agreement estimation and multi-granularity link analysis[J]. Neurocomputing, 2015, 170: 240-250. 10.1016/j.neucom.2014.05.094 |
25 | HUANG D, LAI J H, WANG C D. Robust ensemble clustering using probability trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(5): 1312-1326. 10.1109/tkde.2015.2503753 |
26 | HUANG D, LAI J H, WANG C D. Ensemble clustering using factor graph [J]. Pattern Recognition, 2016, 50: 131-142. 10.1016/j.patcog.2015.08.015 |
27 | HUANG D, WANG C D, LAI J H. Locally weighted ensemble clustering [J]. IEEE Transactions on Cybernetics, 2018, 48(5): 1460-1473. 10.1109/tcyb.2017.2702343 |
28 | HUANG D, WANG C D, WU J S, et al. Ultra-scalable spectral clustering and ensemble clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1212-1226. 10.1109/tkde.2019.2903410 |
29 | HUANG D, WANG C D, PENG H X, et al. Enhanced ensemble clustering via fast propagation of cluster-wise similarities[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 508-520. 10.1109/tsmc.2018.2876202 |
30 | HUANG D, WANG C D, LAI J H, et al. Toward multi-diversified ensemble clustering of high-dimensional data: from subspaces to metrics and beyond [J]. IEEE Transactions on Cybernetics, 2022, 52(11): 12231-12244. 10.1109/tcyb.2021.3049633 |
31 | STREHL A, GHOSH J. Cluster ensembles — a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3: 583-617. |
32 | LI Z G, WU X M, CHANG S F. Segmentation using superpixels: a bipartite graph partitioning approach[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 789-796. 10.1109/cvpr.2012.6247750 |
33 | XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition [C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2014: 2149-2155. 10.1609/aaai.v28i1.8950 |
34 | ZHAN K, NIE F P, WANG J, et al. Multiview consensus graph clustering[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1261-1270. 10.1109/tip.2018.2877335 |
[1] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[2] | Yao DONG, Yixue FU, Yongfeng DONG, Jin SHI, Chen CHEN. Survey of incomplete multi-view clustering [J]. Journal of Computer Applications, 2024, 44(6): 1673-1682. |
[3] | Chenghao YANG, Jie HU, Hongjun WANG, Bo PENG. Incomplete multi-view clustering algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(12): 3784-3789. |
[4] | Yunhua ZHU, Bing KONG, Lihua ZHOU, Hongmei CHEN, Chongming BAO. Multi-view clustering network guided by graph contrastive learning [J]. Journal of Computer Applications, 2024, 44(10): 3267-3274. |
[5] | Du CHEN, Yuanyuan LI, Yu CHEN. Directed gene regulatory network inference algorithm based on t-test and stepwise network search [J]. Journal of Computer Applications, 2024, 44(1): 199-205. |
[6] | Ziyi HE, Yan YANG, Yiling ZHANG. Multi-view clustering network with deep fusion [J]. Journal of Computer Applications, 2023, 43(9): 2651-2656. |
[7] | Hanchen LI, Shunxiang ZHANG, Guangli ZHU, Tengke WANG. Chinese homophonic neologism discovery method based on Pinyin similarity [J]. Journal of Computer Applications, 2023, 43(9): 2715-2720. |
[8] | Lin SUN, Jinxu HUANG, Jiucheng XU. Feature selection for imbalanced data based on neighborhood tolerance mutual information and whale optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1842-1854. |
[9] | Jin XIA, Zhengqun WANG, Shiming ZHU. Traffic flow prediction model based on time series decomposition [J]. Journal of Computer Applications, 2023, 43(4): 1129-1135. |
[10] | Shigang YANG, Yongguo LIU. Short text classification method by fusing corpus features and graph attention network [J]. Journal of Computer Applications, 2022, 42(5): 1324-1329. |
[11] | Yudan CHEN, Cuifang GAO, Wanqiang SHEN, Ping YIN. Iterative intuitionistic fuzzy K-modes algorithm [J]. Journal of Computer Applications, 2022, 42(2): 375-381. |
[12] | Dongchang ZHAI, Hongmei CHEN. Hyperspectral band selection algorithm based on neighborhood entropy [J]. Journal of Computer Applications, 2022, 42(2): 485-492. |
[13] | Jiaojiao GUAN, Xuezhong QIAN, Shibing ZHOU, Kaibin JIANG, Wei SONG. Multi-view clustering via subspace merging on Grassmann manifold [J]. Journal of Computer Applications, 2022, 42(12): 3740-3749. |
[14] | Yongfeng DONG, Xiangqian QU, Linhao LI, Yao DONG. Academic journal contribution recommendation algorithm based on author preferences [J]. Journal of Computer Applications, 2022, 42(1): 50-56. |
[15] | Yongbo CHEN, Qiaoqin LI, Yongguo LIU. Dynamic relevance based feature selection algorithm [J]. Journal of Computer Applications, 2022, 42(1): 109-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||