[1] GUYON I, ELISSEEFF A. An introduction to variable and feature selection [J]. Journal of Machine Learning Research, 2003, 3: 1157-1182. [2] HE X, CAI D, NIYOGI P. Laplacian score for feature selection [EB/OL].[2014-10-10]. http://people.cs.uchicago.edu/~niyogi/papersps/HeCaiNiylapscore.pdf. [3] YU L, LIU H. Feature selection for high-dimensional data: a fast correlation-based filter solution [EB/OL]. [2014-10-10]. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.2975. [4] WESTON J, GUYON I. Support vector machine-recursive feature elimination (SVM-RFE): US, US8095483 B2[P]. 2010. [5] TIBSHIRANI R. Regression shrinkage and selection via the LASSO: a retrospective [J]. Journal of the Royal Statistical Society, 2011, 73(3):273-282. [6] PUDIL P, NOVOVICOVA1 J, KITTLER J. Floating search methods in feature selection [J]. Pattern Recognition Letters, 1994, 15(11): 1119-1125. [7] NG A Y. Feature selection, L1 vs. L2 regularization, and rotational invariance[J]. International Conferences on Machine Learning, 2004, 19(5):379-387. [8] ZHOU J, LU Z, SUN J, et al. FeaFiner: biomarker identification from medical data through feature generalization and selection [C]//KDD 2013: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2013: 1034-1042. [9] LIU F, WEE C Y, CHEN H. Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification [J]. NeuroImage, 2014, 84: 466-475. [10] ZOU H, HASTIE T. Regularization and variable selection via the elastic net [J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320. [11] TIBSHIRANI R, SAUNDERS M, ROSSET S. Sparsity and smoothness via the fused lasso[J]. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 2005, 67(1): 91-108. [12] YE G, XIE X. Split Bregman method for large scale fused lasso [J]. Computational Statistics & Data Analysis, 2011, 55(4): 1552-1569. [13] YAMADA M, JITKRITTUM W, SIGAL L. High-dimensional feature selection by feature-wise kernelized lasso [J]. Neural Computation, 2014, 26(1): 185-207. [14] CHEN X, PAN W, KWOK J T, et al. Accelerated gradient method for multi-task sparse learning problem [C]//Proceedings of the Ninth IEEE International Conference on Data Mining. Piscataway: IEEE Press,2009:746-751. [15] LIU J, YE J. Efficient L1/Lq norm regularization [R]. Arizona: Arizona State University, 2009. [16] CAI D, HE X, ZHOU K. Locality sensitive discriminant analysis [C]//Proceedings of the 2007 International Joint Conference on Artifical Intelligence. [S. l.]: Morgan Kaufmann Press, 2007: 708-713. [17] XUE H, CHEN S, YANG Q. Discriminatively regularized least-squares classification [J]. Pattern Recognition, 2009,42(1):93-104. |