[1] KENNEDY J, EBERHART R C. Particle swarm optimization [C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 1995: 1942-1948. [2] LU H, CHEN W. Dynamic-objective particle swarm optimization for constrained optimization problems [J]. Journal of combinatorial optimization, 2006, 12(4): 409-419. [3] 刘衍民,牛奔,赵庆祯.多目标优化问题的粒子群算法仿真研究[J].计算机应用研究,2011,28(2):458-460.(LIU Y M, NIU B, ZHAO Q Z. Particle swarm optimizer simulation research of multi-objective optimization problems [J]. Application research of computers, 2011, 28(2): 458-460.) [4] WILLIAM J.迷茫的旅行商:一个无处不在的计算机算法问题[M].随春宁,译.北京:人民邮电出版社,2012:1-278.(WILLIAM J. In pursuit of the traveling salesman: mathematics at the limits of computation [M]. SUI C N, translated. Beijing: Posts & Telecom Press, 2012: 1-278.) [5] GAREY M R, JOHNSON D S. Computers and intractability, a guide to the theory of NP-completeness [M]. San Francisco: W.H. Freeman and Company, 1979: 1-579. [6] 张盛意,蔡之华,占志刚.基于改进模拟退火的遗传算法求解0-1背包问题[J].微电子学与计算机,2011,28(2):61-64.(ZHANG S Y, CAI Z H, ZHAN Z G. Solving 0-1 knapsack problem based on genetic algorithm with improved simulated annealing [J]. Microelectronics & computer, 2011, 28(2): 61-64.) [7] 付聪,沙伟,张海霞,等.基于差分进化的离散粒子群算法求解TSP问题[J].微处理机,2014(3):30-32.(FU C, SHA W, ZHANG H X, et al. Discrete particle swarm optimization algorithm based on differential evolution of TSP [J]. Microprocessors, 2014(3): 30-32.) [8] 于莹莹,陈燕,李桃迎.改进的遗传算法求解旅行商问题[J].控制与决策,2014,29(8):1483-1488.(YU Y Y, CHEN Y, LI T Y. Improved genetic algorithm for solving TSP [J]. Control and decision, 2014, 29(8): 1483-1488.) [9] 吴华锋,陈信强,毛奇凰,等.基于自然选择策略的蚁群算法求解TSP问题[J].通信学报,2013,34(4):165-170.(WU H F, CHEN X Q, MAO Q H, et al. Improved ant colony algorithm based on natural selection strategy for solving TSP problem [J]. Journal on communications, 2013, 34(4): 165-170.) [10] 肖健梅,李军军,王锡淮.改进微粒群优化算法求解旅行商问题[J].计算机工程与应用,2004,40(35):50-52.(XIAO J M, LI J J, WANG X H. Improved particle swarm optimization algorithm for solving TSP problem [J]. Computer engineering and applications, 2004, 40(35): 50-52.) [11] 王东,吴湘滨,毛先成,等.一种改进的求解TSP混合粒子群优化算法[J].计算机工程,2008,34(6):185-187.(WANG D, WU X B, MAO X C, et al. Improved TSP hybrid particle swarm optimization algorithm for solving TSP problem [J]. Computer engineering, 2008, 34(6): 185-187.) [12] 邓伟林,胡桂武.一种求旅行商问题的离散粒子群算法[J].计算机与现代化,2012(3):1-4.(DENG W L, HU G W. Discrete particle swarm optimization algorithm for TSP [J]. Computer and modernization, 2012(3): 1-4.) [13] WANG X, MU A, ZHU S. IPSO: a new way to solve traveling salesman problem [J]. Intelligent control and automation, 2013,4(2): 122-125. [14] LIAN Z, GU X, JIAO B. A similar particle swarm optimization algorithm for permutation flow shop scheduling to minimize makespan [J]. Applied mathematics and computation, 2006, 175(8): 773-785. [15] MARINAKIS Y, MARINAKI M. A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem [J]. Computers & operations research, 2010, 37(3): 432-442. [16] 刘任任.算法分析与设计[M].武汉:武汉理工大学出版社,2003:1-155.(LIU R R. Algorithm analysis and design [M]. Wuhan: Wuhan University of Technology Press, 2003: 1-155.) [17] KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm [C]// Proceedings of the 1997 World Multi-Conference on Systemics, Cybernetics and Informatics. Piscataway, NJ: IEEE, 1997: 4104-4109. [18] CROES G A. A method for solving traveling salesman problems [J]. Operations research, 1958, 6(6): 791-812. [19] CHUANG L Y, HSIAO C J, YANG C H. Chaotic particle swarm optimization for data clustering [J]. Expert systems with application, 2011, 38(12): 14555-14563. |