[1] International Data Corporation. EMC digital universe study with research and analysis by IDC [EB/OL]. [2014-11-30]. http://www.emc.com/leadership/digital-universe/index.htm. [2] RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3): 56-58. [3] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]//UAI '98: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, 1998: 43-52. [4] DESHPANDE M, KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1):143-177. [5] LINDEN G, SMITH B, YORK J. Amazon.com recommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1):76-80. [6] LIU Z B, QU W Y, LI H T, et al. A hybrid collaborative filtering recommendation mechanism for P2P networks[J]. Future Generation Computer Systems, 2010, 26(8): 1409-1417. [7] 陈克寒,韩盼盼,吴健.基于用户聚类的异构社交网络推荐算法[J].计算机学报,2013,36(2):349-359. (CHEN K H, HAN P P, WU J. User clustering based social network recommendation[J]. Chinese Journal of Computers, 2013, 36(2): 349-359.) [8] SHANG M-S, JIN C-H, ZHOU T, et al. Collaborative filtering based on multi-channel diffusion[J]. Physica A: Statistical Mechanics & Its Applications, 2009, 388(23): 4867-4871. [9] ZHANG Z K, YU L, FANG K, et al. Website-oriented recommendation based on heat spreading and tag-aware collaborative filtering[J]. Physica A: Statistical Mechanics & Its Applications, 2014, 399: 82-88. [10] KIM J K, CHO Y H. Using Web usage mining and SVD to improve e-commerce recommendation quality[C]//PRIMA 2003: Proceedings of the 6th Pacific Rim International Workshop on Multi-Agents, LNAI 2891. Berlin: Springer-Verlag, 2003: 86-97. [11] 黄创光,印鉴,汪静,等.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. (HUANG C G, YIN J, WANG J, et al. Uncertain neighbors's collaborative filtering recommendation algorithm[J]. Chinese Journal of Computers, 2010, 33(8): 1369-1377.) [12] DESHPANDE M, KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177. [13] PAN R, DOLOG P, XU G. KNN-based clustering for improving social recommender systems[C]//ADMI 2012: Proceedings of the 8th International Workshop on Agents and Data Mining Interaction, LNCS 7607. Berlin: Springer-Verlag, 2013: 115-125. [14] ZHAO Z-D, SHANG M-S. User-based collaborative-filtering recommendation algorithms on Hadoop[C]//WKDD '10: International Workshop on Knowledge Discovery and Data Mining. Washington, DC: IEEE Computer Society, 2010: 478-481. [15] DE PESSEMIER T, VANHECKE K, DOOMS S, et al. Content-based recommendation algorithms on the Hadoop mapreduce framework[C]//WEBIST-2011: Proceedings of the 7th International Conference on Web Information Systems and Technologies, LNBIP 101. Berlin: Springer-Verlag, 2011: 237-240. [16] SCHELTER S, BODEN C, MARKL V. Scalable similarity-based neighborhood methods with MapReduce[C]//RecSys '12: Proceedings of the sixth ACM Conference on Recommender Systems. New York: ACM, 2012: 163-170. [17] 朱夏,宋爱波,东方,等.云计算环境下基于协同过滤的个性化推荐机制[J].计算机研究与发展,2014,51(10):2255-2269. (ZHU X, SONG A B, DONG F, et al. A collaborative filtering recommendation mechanism for cloud computing[J]. Journal of Computer Research and Development, 2014, 51(10): 2255-2269.) [18] FORMOSO V, FERNÁNDEZ D, CACHEDA F, et al. Distributed architecture for k-nearest neighbors recommender systems[J]. World Wide Web: Internet & Web Information Systems, 2014, 18(4): 1-21. [19] PAGARE R, SHINDE A. recommendation system using Bloom filter in MapReduce[J]. International Journal of Data Mining & Knowledge Management Process, 2013, 3(6): 127-134. [20] LEE C-R, CHANG Y-F. Enhancing accuracy and performance of collaborative filtering algorithm by stochastic SVD and its MapReduce implementation[C]//IPDPSW 2013: Proceedings of the 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and PhD Forum. Washington, DC: IEEE Computer Society, 2013: 1869-1878. [21] Institut for Informatic Freiburg. Booking-crossing data sets [EB/OL]. [2014-12-20]. http://www2.informatik.uni-freiburg.de/~cziegler/BX |