[1] 何西健. 胶州铁路物流中心建设方案优化研究[J]. 铁道运输与经济, 2020, 42(10):27-31, 48.(HE X J. A research on the optimization plan of Jiaozhou railway logistics center[J]. Railway Transport and Economy, 2020, 42(10):27-31, 48.) [2] 李磊, 杨爱峰, 唐娜, 等. 基于多种群搜索的PSO的物流配送中心寻址求解[J]. 合肥工业大学学报(自然科学版), 2017, 40(2):266-271.(LI L, YANG A F, TANG N, et al. Solution for logistics distribution center location based on multi-population search PSO algorithm[J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(2):266-271.) [3] 尚月. 基于改进萤火虫算法的配送中心选址问题研究[D]. 开封:河南大学, 2018:4-5.(SHANG Y. Research on location problem of distribution center based on improved firefly algorithm[D]. Kaifeng:Henan University, 2018:4-5.) [4] 徐松金, 龙文. 嵌入遗传算子的改进灰狼优化算法[J]. 兰州理工大学学报, 2016, 42(4):102-108.(XU S J, LONG W. Improved grey wolf optimization algorithm embedded with genetic operator[J]. Journal of Lanzhou University of Technology, 2016, 42(4):102-108.) [5] 袁群, 左弈. 基于改进混合遗传算法的冷链物流配送中心选址优[J]. 上海交通大学学报, 2016, 50(11):1795-1800.(YUAN Q, ZUO Y. Selection of cold chain logistics distribution center location based on improved hybrid genetic algorithm[J]. Journal of Shanghai Jiao Tong University, 2016, 50(11):1795-1800.) [6] 李茂林. 基于改进猴群优化算法的物流配送中心选址研究[J]. 太原学院学报(自然科学版), 2020, 38(2):44-50.(LI M L. Location selection of logistics distribution center based on improved monkey optimization algorithm[J]. Journal of Taiyuan University (Natural Science Edition), 2020, 38(2):44-50.) [7] 生力军. 基于量子粒子群算法的物流配送中心选址[J]. 科学技术与工程, 2019, 19(11):183-187.(SHENG L J. Location of logistics distribution center based on quantum particle swarm optimization[J]. Science Technology and Engineering, 2019, 19(11):183-187.) [8] 李小川, 刘媛华. 基于改进烟花算法的物流配送中心选址研究[J]. 软件导刊, 2017, 16(11):153-156.(LI X C, LIU Y H. Research on logistics distribution centers location based on improued fireworks algorithm[J]. Software Guide, 2017, 16(11):153-156.) [9] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61. [10] 龙文, 赵东泉, 徐松金. 求解约束优化问题的改进灰狼优化算法[J]. 计算机应用, 2015, 35(9):2590-2595.(LONG W, ZHAO D Q, XU S J. Improved grey wolf optimization algorithm for constrained optimization problem[J]. Journal of Computer Applications, 2015, 35(9):2590-2595.) [11] 石兴, 于梦琦, 翟鹤. 关于物流企业进一步降成本路径研究——以铁路物流行业S公司为例[J]. 科技经济导刊, 2020(28):213-214.(SHI X, YU M Q, ZHAI H. Research on further cost reduction path of logistics enterprises-a case study of S company in railway logistics industry[J]. Technology and Economic Guide, 2020(28):213-214.) [12] 史峰, 王辉, 郁磊, 等. MATLAB智能算法30个案例分析[M]. 北京:北京航空航天大学出版社, 2011:118-120.(SHI F, WANG H, YU L, et al. Analysis of 30 Cases of MATLAB Intelligent Algorithm[M]. Beijing:Beihang University Press, 2011:118-120.) [13] 黄晨晨, 魏霞, 黄德启, 等. 求解高维复杂函数的混合蛙跳-灰狼优化算法[J]. 控制理论与应用, 2020, 37(7):1655-1666. (HUANG C C, WEI X, HUANG D Q, et al. Shuffled frog leaping grey wolf algorithm for solving high dimensional complex functions[J]. Control Theory and Applications, 2020, 37(7):1655-1666.) [14] 邓立宝, 吴怡然, 郭苏. 基于分解多目标进化的椭圆定日镜场布局[J]. 郑州大学学报(工学版), 2020, 41(5):37-43.(DENG L B, WU Y R, GUO S. Elliptical heliostat field layout optimization based on MOEA/D[J]. Journal of Zhengzhou University(Engineering Science), 2020, 41(5):37-43.) [15] 石建平, 刘国平, 李培生, 等. 双策略协同进化果蝇优化算法及其应用[J/OL]. 计算机集成制造系统.[2020-11-30]. http://kns.cnki.net/kcms/detail/11.5946.TP.20201125.1815.004.html. (SHI J P, LIU G P, LI P S, et al. Double strategies co-evolutionary fruit fly optimization algorithm and its application[J/OL]. Computer Integrated Manufacturing System.[2020-11-30]. http://kns.cnki.net/kcms/detail/11.5946.TP.20201125.1815.004.html.) |