[1] 程学旗,靳小龙,王元卓,等.大数据系统和分析技术综述[J].软件学报,2014,25(9):1889-1908.(CHENG X Q, JIN X L, WANG Y Z, et al. Survey on big data system and analytic technology [J]. Journal of Software, 2014,25(9):1889-1908.) [2] 王元卓,靳小龙,程学旗.网络大数据:现状与展望[J].计算机学报,2013,36(6):1125-1138.(WANG Y Z,JIN X L,CHENG X Q. Network big data: present and future[J]. Chinese Journal of Computers, 2013, 36(6): 1125-1138. [3] 孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169.(MENG X F, CI X. Big data management: concepts, techniques and challenges [J]. Journal of Computer Research and Development, 2013, 50(1): 146-169.) [4] 张滨,陈吉荣,乐嘉锦.大数据管理技术研究综述[J].计算机应用与软件,2014,31(11):1-5.(ZHANG B, CHEN J R, LE J J. Overview on big data management technology research [J]. Computer Applications and Software, 2014, 31(11): 1-5.) [5] ZICARI R V. Big data: challenges and opportunities [EB/OL]. [2016-01-08]. http://gotocon.com/dl/goto-aar-2012/slides/RobertoV.Zicari_BigDataChallengesAndOpportunities.pdf. [6] ZHAO Q, XIONG C, ZHAO X, et al. A data placement strategy for data-intensive scientific workflows in cloud [C]// Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Washington, DC: IEEE Computer Society, 2015: 928-934. [7] YU B, PAN J. Location-aware associated data placement for geo-distributed data-intensive applications [C]// Proceedings of the 2015 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2015:603-611. [8] JALAPARTI V, BODIK P, MENACHE I, et al. Network-aware scheduling for data-parallel jobs: plan when you can [C]// SIGCOMM '15: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. New York: ACM, 2015: 407-420. [9] CHEN W, PAIK I, LI Z. Topology-aware optimal data placement algorithm for network traffic optimization [J]. IEEE Transactions on Computers, 2016,65(8):2603-2617. [10] WANG J, QIU M, GUO B, et al. Phase-reconfigurable shuffle optimization for Hadoop MapReduce [J]. IEEE Transactions on Cloud Computing, 2015(99):1. [11] YU W, WANG Y, QUE X, et al. Virtual shuffling for efficient data movement in MapReduce [J]. IEEE Transactions on Computers, 2015, 64(2):556-568. [12] BUYYA R. High Performance Cluster Computing: Architectures and Systems [M]. Upper Saddle River, NJ: Prentice Hall, 1999, 1: 823. [13] 刘琨,肖琳,赵海燕.Hadoop中云数据负载均衡算法的研究及优化[J].微电子学与计算机,2012,29(9):18-22.(LIU K, XIAO L, ZHAO H Y. Research and optimize of cloud data load balancing in hadoop [J]. Microelectronics & Computer, 2013, 29(9): 18-22. [14] XIE Q, LU Y. Priority algorithm for near-data scheduling: throughput and heavy-traffic optimality [C]// Proceedings of the 2015 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2015: 963-972. [15] LE Y, LIU J, ERGUN F, et al. Online load balancing for MapReduce with skewed data input [C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2014: 2004-2012. [16] CHEN Q, YAO J, XIAO Z. LIBRA: lightweight data skew mitigation in MapReduce [J]. IEEE Transactions on Parallel & Distributed Systems, 2015, 26(9): 2520-2533. [17] TANG S, LEE B S, HE B. Dynamic job ordering and slot configurations for MapReduce workloads [J]. IEEE Transactions on Services Computing, 2016, 9(1): 4-17. [18] JOHNSON S M. Optimal two- and three-stage production schedules with setup times included [J]. Naval Research Logistics Quarterly, 1954, 1(1):61-68. [19] YAO Y, WANG J, SHENG B, et al. Self-adjusting slot configurations for homogeneous and heterogeneous Hadoop clusters [EB/OL]. [2016-01-09]. http://www.cs.umb.edu/~shengbo/paper/tcc15.pdf. [20] GRANDL R, ANANTHANARAYANAN G, KANDULA S, et al. Multi-resource packing for cluster schedulers [C]// SIGCOMM '14: Proceedings of the 2014 ACM Conference on SIGCOMM. New York: ACM, 2014:455-466. [21] 魏文娟,王黎明.异构Hadoop集群下的比例数据分配策略[J].计算机应用与软件,2015,32(6):316-319.(WEI W J, WANG L M. Proportional data placement strategy in heterogeneous hadoop clusters [J]. Computer Applications and Software, 2015, 32(6): 316-319.) [22] WANG B, JIANG J, YANG G. ActCap: accelerating MapReduce on heterogeneous clusters with capability-aware data placement [C]// Proceedings of the 2015 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2015: 1328-1336. [23] KOOMEY J. Growth in data center electricity use 2005 to 2010 [EB/OL]. [2015-11-04]. http://cs.bennington.edu/courses/f2013/cs4125.01/koomeydatacenterelectuse2011finalversion.pdf. [24] HAMILTON J. Cooperative Expendable Micro-slice Servers (CEMS): low cost, low power servers for Internet-scale services [EB/OL]. [2015-11-04]. http://database.cs.wisc.edu/cidr/cidr2009/JamesHamilton_CEMS.pdf. [25] 廖彬,于炯,张陶,等.基于分布式文件系统HDFS的节能算法[J].计算机学报,2013,36(5):1047-1064.(LIAO B, YU J, ZHANG T, et al. Energy-efficient algorithms for distributed file system HDFS [J].Chinese Journal of Computers, 2013, 36(5): 1047-1064. [26] CAVDAR D, CHEN L Y, ALAGOZ F. Green MapReduce for heterogeneous data centers [C]// Proceedings of the 2014 IEEE Global Communications Conference. Piscataway, NJ: IEEE, 2014: 1120-1126. [27] ZENG D, GU L, GUO S. Cost minimization for big data processing in geo-distributed data centers [J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 314-323. [28] YOON M S, KAMAL A E. Optimal dataset allocation in distributed heterogeneous clouds [C]// Proceedings of the 2014 IEEE Globecom Workshops. Piscataway, NJ: IEEE, 2014: 75-80. [29] MASHAYEKHY L, NEJAD M M, GROSU D, et al. Energy-aware scheduling of MapReduce jobs [C]// Proceedings of the 2014 IEEE International Congress on Big Data. Washington, DC: IEEE Computer Society, 2014:32-39. [30] CHEN K, POWERS J, GUO S, et al. CRESP: towards optimal resource provisioning for MapReduce computing in public clouds [J]. IEEE Transactions on Parallel & Distributed Systems, 2014, 25(6):1403-1412. [31] 林彬,李姗姗,廖湘科,等.Seadown:一种异构MapReduce集群中面向SLA的能耗管理方法[J].计算机学报,2013,36(5):977-987.(LIN B, LI S S, LIAO X K, et al. Seadown: SLA-aware size-scaling power management in heterogeneous MapReduce cluster [J]. Chinese Journal of Computers, 2013, 36(5): 977-987. [32] XU H, LAU W C. Optimization for speculative execution in a MapReduce-like cluster[C]// Proceedings of the 2015 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2015: 1071-1079. [33] ANANTHANARAYANAN G, KANDULA S, GREENBERG A, et al. Reining in the outliers in MapReduce clusters using Mantri [C]// OSDI '10: Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation. Berkeley, CA: USENIX Association, 2010:265-278. [34] CHEN Q, LIU C, XIAO Z. Improving MapReduce performance using smart speculative execution strategy [J]. IEEE Transactions on Computers, 2014, 63(4): 954-967. [35] FONTUGNE R, MAZEL J, FUKUDA K. Hashdoop: a MapReduce framework for network anomaly detection [C]// Proceedings of the 2014 IEEE Conference on Computer Communications Workshops. Piscataway, NJ: IEEE, 2014: 494-499. [36] 宋宝燕,王俊陆,王妍.基于范德蒙码的HDFS优化存储策略研究[J].计算机学报,2015,38(9):1825-1837.(SONG B Y, WANG J L, WANG Y. Optimized storage strategy research of HDFS based on Vandermonde code [J]. Chinese Journal of Computers, 2015, 38(9): 1825-1837. |