[1] 高全力,高岭,杨建峰,等.上下文感知推荐系统中基于用户认知行为的偏好获取方法[J].计算机学报, 2015,38(9):1767-1776. (GAO Q L, GAO L, YANG J F, et al. A preference elicitation method based on user's cognitive behavior for context-aware recommender system[J]. Chinese Journal of Computers, 2015, 38(9):1767-1776.). [2] LIU L, ZHU F, ZHANG L, et al. A probabilistic graphical model for topic and preference discovery on social media[J]. Neurocomputing, 2012, 95:78-88. [3] 项亮.推荐系统实践[M].北京:人民邮电出版社,2012:196-212.(XIANG L. Practice of Recommendation System[M]. Beijing:Posts & Telecom Press, 2012:196-212.). [4] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]//NIPS 2008:Proceedings of the 2008 Conference on Neural Information Processing Systems, Cambridge, MA:MIT Press, 2008:1257-1264. [5] SALAKHUTDINOV R, MNIH A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo[C]//ICML'08:Proceedings of the 25th International Conference on Machine Learning. New York:ACM, 2008:880-887. [6] KOREN Y. Factorization meets the neighborhood:a multifaceted collaborative filtering model[C]//KDD'08:Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2008:426-434. [7] 张连文,郭海鹏.贝叶斯网引论[M].北京:科学出版社,2006:31-36,194. (ZHANG L W, GUO H P. Introduction to Bayesian Networks[M]. Beijing:Science Press, 2006:31-36, 194.). [8] HECKERMAN D. A tutorial on learning with Bayesian networks[M]//Innovations in Bayesian Networks:Theory and Applications, Volume 156 of the Series Studies in Computational Intelligence. Berlin:Springer-Verlag, 2008:33-82. [9] DAYE J, YEU Y K, AHN J, et al. Inference of disease-specific gene interaction network using a Bayesian network learned by genetic algorithm[C]//SAC'15:Proceedings of the 30th Annual ACM Symposium on Applied Computing. New York:ACM, 2015:47-53. [10] ZHANG J, CORMODE G, CECILIA M, et al. PrivBayes:private data release via Bayesian networks[C]//SIGMOD'14:Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2014:1423-1434. [11] WANG H, ZHAI C X, LIANG F, et al. User modeling in search logs via a nonparametric Bayesian approach[C]//WSDM'14:Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York:ACM, 2014:203-212. [12] BIAN J, LONG B, LI L, et al. Exploiting user preference for online learning in Web content optimization systems[J]. ACM Transactions on Intelligent Systems and Technology-Special Issue on Linking Social Granularity and Functions, 2014, 5(2):Article No. 33. [13] ELIDAN G, LOTNER N, FRIEDMAN N, et al. Discovering hidden variables:a structure-based approach[C]//NIPS 2000:Proceedings of the 2000 Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2000:479-485. [14] 吴蕾,张文生,王珏.基于深度学习框架的隐藏主题变量图模型[J].计算机研究与发展,2015,52(1):191-199.(WU L, ZHANG W H, WANG J. Hidden topic variable graphical model based on learning framework[J]. Journal of Computer Research and Development, 2015, 52(1):191-199.). [15] GUAN L, ALAM M H, RYU W-J, et al. A phrase-based model to discover hidden factors and hidden topics in recommender systems[C]//BigComp 2016:Proceedings of the International Conference on Big Data and Smart Computing. Washington, DC:IEEE Computer Society, 2016:337-340. [16] 张宏毅,王立威,陈瑜希.概率图模型研究进展综述[J]. 软件学报,2013,24(11):2476-2497. (ZHANG H Y, WANG L W, CHEN Y X. Research progress of probabilistic graphical models:a survey[J]. Journal of Software, 2013, 24(11):2476-2497.). [17] HRYCEJ T. Gibbs sampling in Bayesian networks[J]. Artificial Intelligence, 1990, 46(3):351-363. [18] 岳昆,王朝禄,朱运磊,等.基于概率图模型的互联网广告点击率发现[J].华东师范大学学报(自然科学版),2013(3):15-25. (YUE K, WANG C L, ZHU Y L, et al. Click-through rate prediction of online advertisements based on probabilistic graphical model[J]. Journal of East China Normal University (Natural Science), 2013(3):15-25.). [19] MovieLens[EB/OL].[2016-03-18]. http://grouplens.org/datasets/movielens/latest/. [20] CHENG J, BELL D A, LIU W. Learning Bayesian networks from data:an efficient approach based on information theory[J]. Artificial Intelligence, 2002, 137(1/2):43-90. [21] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, Series B (Methodological), 2007, 39(1):1-38. [22] PEARL J. Evidential reasoning using stochastic simulation of causal models[J]. Artificial Intelligence, 1987, 32(2):245-257. [23] SHIH T-Y, HOU T-C, JIANG J-D, et al. Dynamically integrating item exposure with rating prediction in collaborative filtering[C]//SIGIR'16:Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2016:813-816. |