[1] AHMED M, MAHMOOD A N. Network traffic analysis based on collective anomaly detection[C]//Proceedings of the 2014 IEEE 9th Conference on Industrial Electronics and Applications. Piscataway, NJ:IEEE, 2014:228-237. [2] BEKERMAN D, SHAPIRA B, ROKACH L, et al. Unknown malware detection using network traffic classification[EB/OL].[2016-01-12]. https://www.researchgate.net/publication/304605520_Unknown_malware_detection_using_network_traffic_classification. [3] LAI Y, CHEN Y, LIU Z, et al. On monitoring and predicting mobile network traffic abnormality[J]. Simulation Modelling Practice and Theory, 2014, 50:176-188. [4] XIA N, MISKOVIC S, BALDI M, et al. GeoEcho:inferring user interests from geotag reports in network traffic[C]//Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies. Washington, DC:IEEE Computer Society, 2014, 2:1-8. [5] FUKUDA K, ASAI H, NAGAMI K. Tracking the evolution and diversity in network usage of smartphones[C]//Proceedings of the 2015 ACM Conference on Internet Measurement Conference. New York:ACM, 2015:253-266. [6] TANG H, LIAO S S, SUN S X. A prediction framework based on contextual data to support mobile personalized marketing[J]. Decision Support Systems, 2013, 56(4):234-246. [7] 蔡君,余顺争.基于复杂网络社团划分的网络流量分类[J].计算机科学,2011,38(3):80-82.(CAI J, YU S Z. Internet traffic classification based on detecting community structure in complex network[J]. Computer Science, 2011, 38(3):80-82.) [8] AL KHATER N, OVERILL R E. Network traffic classification techniques and challenges[C]//Proceedings of the 201510th International Conference on Digital Information Management. Piscataway, NJ:IEEE, 2015:43-48. [9] DAS A K, PATHAK P H, CHUAH C N, et al. Contextual localization through network traffic analysis[EB/OL].[2016-02-04]. http://spirit.cs.ucdavis.edu/pubs/conf/infocom14.pdf. [10] ZHANG F, HE W, LIU X, et al. Inferring users' online activities through traffic analysis[C]//Proceedings of the 4th ACM Conference on Wireless Network Security. New York:ACM, 2011:59-70. [11] HE H, QIAO Y, GAO S, et al. Prediction of user mobility pattern on a network traffic analysis platform[C]//Proceedings of the 10th International Workshop on Mobility in the Evolving Internet Architecture. New York:ACM, 2015:39-44. [12] ZAMAN M, SIDDIQUI T, AMIN M R, et al. Malware detection in Android by network traffic analysis[C]//Proceedings of the 2015 International Conference on Networking Systems and Security. Piscataway, NJ:IEEE, 2015:1-5. [13] ZHANG J, XIANG Y, WANG Y, et al. Network traffic classification using correlation information[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(1):104-117. [14] VLĂDUTU A, COMĂNECI D, DOBRE C. Internet traffic classification based on flows' statistical properties with machine learning[EB/OL].[2016-01-04]. http://xueshu.baidu.com/s?wd=paperuri%3A%28d28202f939e15174bab4e79108ffc9c4%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fnem.1929%2Fabstract&ie=utf-8&sc_us=16572060722905074141. [15] 刘建伟,刘媛,罗雄麟.半监督学习方法[J].计算机学报,2015,38(8):1592-1617.(LIU J W, LIU Y, LUO X L. Semi-supervised learning method[J]. Chinese Journal of Computers, 2015, 38(8):1592-1617.) [16] BAKHSHI T, GHITA B. User traffic profiling[C]//Proceedings of the 2015 Internet Technologies and Applications. Piscataway, NJ:IEEE, 2015:91-97. [17] ANGELOV P, KANGIN D, ZHOU X, et al. Symbol recognition with a new autonomously evolving classifier autoclass[C]//Proceedings of the 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems. Piscataway, NJ:IEEE, 2014:1-7. [18] 徐鹏,林森.基于C4.5决策树的流量分类方法[J].软件学报,2009,20(10):2692-2704.(XU P, LIN S. Traffic classification method based on C4.5 decision tree[J]. Journal of Software, 2009, 20(10):2692-2704.) [19] WANG Y, XIANG Y, ZHANG J. Network traffic clustering using random forest proximities[C]//Proceedings of the 2013 IEEE International Conference on Communications. Piscataway, NJ:IEEE, 2013:2058-2062. [20] 屠金路,金瑜,王庭照.bootstrap法在合成分数信度区间估计中的应用[J].心理科学,2005,28(5):1199-1200.(TU J L, JIN Y, WANG T Z. The application of bootstrap method in the estimation of synthetic fractional reliability[J]. Psychological Science, 2005, 28(5):1199-1200.) [21] 汪中,刘贵全,陈恩红.一种优化初始中心点的K-means算法[J].模式识别与人工智能,2009,22(2):299-304.(WANG Z, LIU G Q, CHEN E H. K-means algorithm for optimizing initial center point[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(2):299-304.) |