[1] 陈丽, 翟崇治, 蒋佳凌, 等. 大气能见度的重要影响因子分析[J]. 山东化工,2015,44(9):169-171.(CHEN L,ZHAI C Z,JIANG J L,et al. Some important influence factors of atmospheric visibility[J]. Shandong Chemical Industry,2015,44(9):169-171.) [2] 侯梦玲, 王宏, 赵天良, 等. 京津冀一次重度雾霾天气能见度及边界层关键气象要素的模拟研究[J]. 大气科学,2017,41(6):1177-1190.(HOU M L,WANG H,ZHAO T L,et al. A modeling study of the visibility and PBL key meteorological elements during a heavy fog-haze episode in Beijing-Tianjin-Hebei of China[J]. Chinese Journal of Atmospheric Sciences,2017,41(6):1177-1190.) [3] 赵秀娟, 李梓铭, 徐敬. 霾天能见度参数化方案改进及预报效果评估[J]. 环境科学,2019,40(4):1688-1696.(ZHAO X J,LI Z M, XU J. Modification and performance tests of visibility parameterizations for haze days[J]. Environmental Science,2019, 40(4):1688-1696.) [4] CHEN R, WANG X, MENG X, et al. Communicating air pollution-related health risks to the public:an application of the air quality health index in Shanghai, China[J]. Environment International,2013,51:168-173. [5] GRELL G A,PECKHAM S E,SCHMITZ R,et al. Fully coupled "online" chemistry within the WRF model[J]. Atmospheric Environment,2005,39(37):6957-6975. [6] 朱凯全, 张宏伟, 张兰. 大气环境多尺度数值模式系统及其应用[J]. 农业灾害研究,2014,4(8):38-41,43.(ZHU K Q, ZHANG H W,ZHANG L. Multi-scale numerical modeling system of atmospheric environment and its application[J]. Journal of Agricultural Catastrophology,2014,4(8):38-41,43.) [7] 陈静, 范引琪, 李杰. CAPPS模式在石家庄市应用的效果检验[J]. 气象与环境学报,2008,24(2):23-27.(CHEN J,FAN Y Q,LI J. Validation of CAPPS in Shijiazhuang,Hebei province[J]. Journal of Meteorology and Environment,2008,24(2):23-27.) [8] 康志明, 桂海林, 花丛, 等. 国家级环境气象业务现状及发展趋势[J]. 气象科技进展,2016,6(2):64-69.(KANG Z M,GUI H L, HUA C,et al. China's national environmen-meteorological services and their developmental trend[J]. Advances in Meteorological Science and Technology,2016,6(2):64-69.) [9] 赵秀娟, 徐敬, 张自银, 等. 北京区域环境气象数值预报系统及PM2.5预报检验[J]. 应用气象学报,2016,27(2):160-172. (ZHAO X J, XU J, ZHANG Z Y, et al. Beijing regional environmental meteorology prediction system and its performance test of PM2.5 concentration[J]. Journal of Applied Meteorological Science,2016,27(2):160-172.) [10] 王媛媛, 赵玮, 邢楠, 等. 基于RMAPS-CHEM模式产品的北京地区能见度预报订正[J]. 气象,2020,46(3):403-411.(WANG Y Y,ZHAO W,XING N,et al. Visibility forecast correction based on RMAPS-CHEM model products in Beijing[J]. Meteorological Monthly,2020,46(3):403-411.) [11] 刘慧, 饶晓琴, 张恒德, 等. 环境气象业务数值模式预报效果对比检验[J]. 气象与环境学报,2017,33(5):17-24.(LIU H, RAO X Q,ZHANG H D,et al. Comparative verification and analysis of environmental meteorology operational numerical prediction models in China[J]. Journal of Meteorology and Environment,2017,33(5):17-24.) [12] BARTOK J,BOTT A,GERA M. Fog prediction for road traffic safety in a coastal desert region[J]. Boundary-Layer Meteorology, 2012,145(3):485-506. [13] 吴波, 胡邦辉, 王学忠, 等. 基于近似支持向量机的能见度释用预报研究[J]. 热带气象学报,2017,33(1):104-110.(WU B, HU B H,WANG X Z,et al. Visibility forecast based on proximal support vector machine[J]. Journal of Tropical Meteorology, 2017,33(1):104-110.) [14] 吴彬贵, 张建春, 李英华, 等. 天津港秋冬季低能见度数值释用预报研究[J]. 气象,2017,43(7):863-871.(WU B G,ZHANG J C,LI Y H,et al. Research on numerical interpretative forecast for low-visibility at Tianjin port in autumn and winter[J]. Meteorological Monthly,2017,43(7):863-871.) [15] 朱国梁. 基于MLP神经网络的机场能见度预测模型[J]. 科技创新与应用,2018(18):1-4.(ZHU G L. Airport visibility prediction model based on MLP neural network[J]. Technology Innovation and Application,2018(18):1-4.) [16] LU Z,LU B,ZHANG H,et al. A method of visibility forecast based on hierarchical sparse representation[J]. Journal of Visual Communication and Image Representation,2019,58:160-165. [17] GUIJO-RUBIO D,GUTIÉRREZ P A,CASANOVA-MATEO C, et al. Prediction of low-visibility events due to fog using ordinal classification[J]. Atmospheric Research,2018,214:64-73. [18] 王智, 张志强, 谢晓芹, 等. 基于提升树的PM2.5浓度预测模型[J]. 软件,2018,39(10):156-163.(WANG Z,ZHANG Z Q, XIE X X,et al. PM2.5 concentration prediction model based on boosting tree[J]. Computer Engineering and Software,2018,39(10):156-163.) [19] 康俊锋, 黄烈星, 张春艳, 等. 多机器学习模型下逐小时PM2.5预测及对比分析[J]. 中国环境科学,2020,40(5):1895-1905. (KANG J F,HUANG L X,ZHANG C Y,et al. Hourly PM2.5 prediction and its comparative analysis under multi-machine learning model[J]. China Environmental Science,2020,40(5):1895-1905.) [20] 高铭壑, 张莹, 张蓉蓉, 等. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报(工学版),2020,50(2):91-99.(GAO M H,ZHANG Y,ZHANG R R,et al. Air quality prediction approach based on integrating forecasting dataset[J]. Journal of Shandong University (Engineering Science),2020,50(2):91-99.) [21] 陈昱文, 黄小猛, 李熠, 等. 基于ECMWF产品的站点气温预报集成学习误差订正[J]. 应用气象学报,2020,31(4):494-503. (CHEN Y W,HUANG X M,LI Y,et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products[J]. Journal of Applied Meteorological Science,2020,31(4):494-503.) [22] 彭岩, 冯婷婷, 王洁. 基于集成学习的O3的质量浓度预测模型[J]. 山东大学学报(工学版),2002,50(4):1-7.(PENG Y, FENG T T,WANG J. An integrated learning approach for O3 mass concentration prediction model[J]. Journal of Shandong University(Engineering Science),2002,50(4):1-7.) [23] 李一蜚, 秦凯, 李丁, 等. 基于梯度提升回归树算法的地面臭氧浓度估算[J]. 中国环境科学,2020,40(3):997-1007.(LI Y F, QIN K, LI D, et al. Estimation of ground-level ozone concentration based on GBRT[J]. China Environmental Science, 2020,40(3):997-1007.) [24] 余予, 孟晓艳, 张欣. 1980-2011年北京城区能见度变化趋势及突变分析[J]. 环境科学研究,2013,26(2):129-136.(YU Y,MENG X Y,ZHANG X. Trends and abruption analysis on the visibility in the urban area of Beijing city during 1980-2011[J]. Research of Environmental Sciences,2013,26(2):129-136.) [25] 姜江, 郭文利, 王春玲. 2007-2015年北京地区能见度时空变化特征[J]. 气象与环境学报,2019,35(1):45-52.(JIANG J, GUO W L,WANG C L. Temporal and spatial characteristics of visibility in Beijing from 2007 to 2015[J]. Journal of Meteorology and Environment,2019,35(1):45-52.) |