| 1 | DOSHI R, APTHORPE N, FEAMSTER N. Machine learning DDoS detection for consumer internet of things devices[C]// Proceedings of the 2018 IEEE Security and Privacy Workshops. Piscataway: IEEE, 2018: 29-35.  10.1109/spw.2018.00013 | 
																													
																							| 2 | 腾讯云T-Sec DDoS防护团队,绿盟科技威胁情报团队. 2021年全球DDoS威胁报告[R/OL]. [2022-09-14].. | 
																													
																							|  | Tencent Cloud T-Sec DDoS Protection Group, NSFOCUS Threat Intelligence Group. Global DDoS threat report 2021[R/OL]. [2022-09-14].. | 
																													
																							| 3 | PRIYA S S, SIVARAM M, YUVARAJ D, et al. Machine learning based DDoS detection[C]// Proceedings of the 2020 International Conference on Emerging Smart Computing and Informatics. Piscataway: IEEE, 2020: 234-237.  10.1109/esci48226.2020.9167642 | 
																													
																							| 4 | SUTHAHARAN S. Decision tree learning[M]// Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning, ISIS 36. Cham: Springer, 2016:237-269.  10.1007/978-1-4899-7641-3_10 | 
																													
																							| 5 | JIA B, HUANG X, LIU R, et al. A DDoS attack detection method based on hybrid heterogeneous multiclassifier ensemble learning[J]. Journal of Electrical and Computer Engineering, 2017, 2017: No.4975343.  10.1155/2017/4975343 | 
																													
																							| 6 | NAJAFIMEHR M, ZARIFZADEH S, MOSTAFAVI S. A hybrid machine learning approach for detecting unprecedented DDoS attacks[J]. The Journal of Supercomputing, 2022, 78(6): 8106-8136.  10.1007/s11227-021-04253-x | 
																													
																							| 7 | 孟曈. 基于机器学习与可逆Sketch的DDoS攻击检测[D]. 西安:西安电子科技大学, 2020:92-92. | 
																													
																							|  | MENG T. DDoS intrusion detection based on machine learning and reversible sketch[D]. Xi’an: Xidian University, 2020: 92-92. | 
																													
																							| 8 | OSANAIYE O, CAI H, CHOO K K R, et al. Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing[J]. EURASIP Journal on Wireless Communications and Networking, 2016, 2016: No.130.  10.1186/s13638-016-0623-3 | 
																													
																							| 9 | GU Y, LI K, GUO Z, et al. Semi-supervised k-means DDoS detection method using hybrid feature selection algorithm[J]. IEEE Access, 2019, 7: 64351-64365.  10.1109/access.2019.2917532 | 
																													
																							| 10 | PANDE S, KHAMPARIA A, GUPTA D, et al. DDOS detection using machine learning technique[M]// KHANNA A, SINGH A K, SWAROOP A. Recent Studies on Computational Intelligence: Doctoral Symposium on Computational Intelligence (DoSCI 2020), SCI 921. Singapore: Springer, 2021: 59-68.  10.1007/978-981-15-8469-5_5 | 
																													
																							| 11 | CHENG J, LI M, TANG X, et al. Flow correlation degree optimization driven random forest for detecting DDoS attacks in cloud computing[J]. Security and Communication Networks, 2018, 2018: No.6459326.  10.1155/2018/6459326 | 
																													
																							| 12 | LOURENÇO P, GODINHO S, SOUSA A, et al. Estimating tree aboveground biomass using multispectral satellite-based data in Mediterranean agroforestry system using random forest algorithm[J]. Remote Sensing Applications: Society and Environment, 2021, 23: No.100560.  10.1016/j.rsase.2021.100560 | 
																													
																							| 13 | RIGATTI S J. Random forest[J]. Journal of Insurance Medicine, 2017, 47(1): 31-39.  10.17849/insm-47-01-31-39.1 | 
																													
																							| 14 | HESTERBERG T. Bootstrap[J]. WIREs: Computational Statistics, 2011, 3(6): 497-526.  10.1002/wics.182 | 
																													
																							| 15 | BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification And Regression Trees (CART) [M]// Biometrics. [S.l]: Wadsworth, 1984: 358.  10.2307/2530946 | 
																													
																							| 16 | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140.  10.1007/bf00058655 | 
																													
																							| 17 | 李郅琴,杜建强,聂斌,等. 特征选择方法综述[J]. 计算机工程与应用, 2019, 55(24):10-19.  10.3778/j.issn.1002-8331.1909-0066 | 
																													
																							|  | LI Z Q, DU J Q, NIE B, et al. Summary of feature selection methods[J]. Computer Engineering and Applications, 2019, 55(24): 10-19.  10.3778/j.issn.1002-8331.1909-0066 | 
																													
																							| 18 | KIRA K, RENDELL L A. The feature selection problem: traditional methods and a new algorithm[C]// Proceedings of the 10th AAAI Conference on Artificial intelligence. Menlo Park, CA: AAAI Press, 1992: 129-134.  10.1016/b978-1-55860-247-2.50037-1 | 
																													
																							| 19 | MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels[C]// Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop. Piscataway: IEEE, 1999: 41-48.  10.1109/nnsp.1999.788116 | 
																													
																							| 20 | VERLEYSEN M, FRANÇOIS D. The curse of dimensionality in data mining and time series prediction[C]// Proceedings of the 2005 International Work-Conference on Artificial Neural Networks, LNCS 3512. Berlin: Springer, 2005: 758-770. | 
																													
																							| 21 | TANGIRALA S. Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(2): 612-619.  10.14569/ijacsa.2020.0110277 | 
																													
																							| 22 | RAO H, SHI X, RODRIGUE A K, et al. Feature selection based on artificial bee colony and gradient boosting decision tree[J]. Applied Soft Computing, 2019, 74: 634-642.  10.1016/j.asoc.2018.10.036 |