[1] The digital universe in 2020:big data, bigger digital shadows, and biggest growth in the far east[EB/OL].[2017-03-15]. http://www.emc.com/collateral/analyst-reports/idc-the-digitaluniverse-in-2020.pdf. [2] 孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-149.(MENG X F, CI X. Big data management:concepts, techniques and challenges[J]. Journal of Computer Research and Development, 2013, 50(1):146-149) [3] GHEMAWAT S, GOBIOFF H, LEUNG S T. The Google file system[C]//Proceedings of the 19th ACM Symposium on Operating System Principles. New York:ACM, 2003:29-43. [4] DEAN J, GHEMAWAT S. MapReduce:simplified data processing on large clusters[C]//OSDI 2004:Proceedings of the 2004 Conference on Operating System Design and Implementation. New York:ACM, 2004:137-150. [5] 廖彬,张陶,于炯,等.MapReduce能耗建模及优化分析[J].计算机研究与发展,2016,53(9):2107-2131.(LIAO B, ZHANG T, YU J, et al. Energy consumption modeling and optimization analysis for MapReduce[J]. Journal of Computer Research and Development, 2016, 53(9):2107-2131.) [6] 廖彬,于炯,张陶,等.基于分布式文件系统HDFS的节能算法[J].计算机学报,2013,36(5):1047-1064.(LIAO B, YU J, ZHANG T, et al. Energy-efficient algorithms for distributed file system HDFS[J]. Chinese Journal of Computers, 2013, 36(5):1047-1064.) [7] 张陶,于炯,廖彬,等.基于GraphX的传球网络构建及分析研究[J].计算机研究与发展,2016,53(12):2729-2752.(ZHANG T, YU J, LIAO B, et al. The construction and analysis of pass network graph based on GraphX[J]. Journal of Computer Research and Development, 2016, 53(12):2729-2752.) [8] 宋杰,刘雪冰,朱志良,等.一种能效优化的MapReduce资源比模型[J].计算机学报,2015,38(1):59-73.(SONG J, LIU X B, ZHU Z L, et al. An energy-efficiency optimized resource ratio model for MapReduce[J]. Chinese Journal of Computers, 2015, 38(1):59-73.) [9] 廖彬,张陶,于炯,等.温度感知的MapReduce节能任务调度策略[J].通信学报,2016,37(1):61-75.(LIAO B, ZHANG T, YU J, et al. Temperature aware energy-efficient task scheduling strategies for MapReduce[J]. Journal on Communications, 2016, 37(1):61-75.) [10] 廖彬,张陶,于炯,等.适应节能与异构环境的MapReduce数据布局策略[J].中山大学学报(自然科学版),2015,54(6):55-66.(LIAO B, ZHANG T, YU J, et al. An energy-efficient and heterogeneous environment adaptive data layout strategy for MapReduce[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2015, 54(6):55-66.) [11] 杨兴耀,于炯,吐尔根·依布拉音,等.融合奇异性和扩散过程的协同过滤模型.软件学报,2013,24(8):1868-1884.(YANG X Y, YU J, IBRAHIM T, et al. Collaborative filtering model fusing singularity and diffusion process[J]. Journal of Software, 2013, 24(8):1868-1884.) [12] GHAUTH K I, ABDULLAH N A. Learning materials recommendation using good learners' ratings and content-based filtering[J]. Educational Technology Research and Development, 2010, 58(6):711-727. [13] UDDIN M N, SHRESTHA J, JO G S. Enhanced content-based filtering using diverse collaborative prediction for movie recommendation[C]//Proceedings of the 1st Asian Conference on Intelligent Information and Database Systems. Piscataway, NJ:IEEE, 2009:132-137. [14] NGUYEN A T, DENOS N, BERRUT C. Improving new user recommendations with rule-based induction on cold user data[C]//Proceedings of the 2007 ACM Conference on Recommender Systems. New York:ACM, 2007:121-128. [15] CHUN J, OH J Y, KWON S, et al. Simulating the effectiveness of using association rules for recommendation systems[C]//Proceedings of the 2005 Systems Modeling and Simulation:Theory and Applications. Berlin:Springer, 2005:306-314. [16] QIU L Y, BENBASAT I. A study of demographic embodiments of product recommendation agents in electronic commerce[J]. International Journal of Human-Computer Studies, 2010, 68(10):669-688. [17] CHEN T, HE L. Collaborative filtering based on demographic attribute vector[C]//Proceedings of the 2009 ETP International Conference on Future Computer and Communication. Piscataway, NJ:IEEE, 2009:225-229. [18] JIA C X, LIU R R, SUN D, et al. A new weighting method in network-based recommendation[J]. Physica A-Statistical Mechanics and Its Applications, 2008, 387(23):5887-5891. [19] ZHOUT, REN J, MEDO M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4):1-7. [20] LIU Z B, QU W Y, LI H T, et al. A hybrid collaborative filtering recommendation mechanism for P2P networks[J]. Future Generation Computer Systems, 2010, 26(8):1409-1417. [21] ZHAO Z D, SHANG M S. User-based collaborative-filtering recommendation algorithms on Hadoop[C]//Proceedings of the 2010 International Conference on Knowledge Discovery and Data Mining. Piscataway, NJ:IEEE, 2010:478-481. [22] MA M M, WANG S P. Research of user-based collaborative filtering recommendation algorithm based on Hadoop[C]//Proceedings of the 2015 International Conference on Computer Information Systems and Industrial Applications. Amsterdam:Atlantis Press, 2015:63-66. [23] SCHELTER S, BODEN C, MARKL V. Scalable similarity-based neighborhood methods with MapReduce[C]//Proceedings of the 2012 ACM Conference on Recommender Systems. New York:ACM, 2012:163-170. [24] DAS A S, DATAR M, GARG A, et al. Google news personalization:scalable online collaborative filtering[C]//Proceedings of the 2007 International Conference on World Wide Web. New York:ACM, 2007:271-280. [25] JIANG J, LU J, ZHANG G, et al. Scaling-up item-based collaborative filtering recommendation algorithm based on Hadoop[C]//Proceedings of the 2011 IEEE World Congress on Services. Piscataway, NJ:IEEE, 2011:490-497. |