[1] CAI J F, HUI J, CHAO Q L, et al. Blind motion deblurring from a single image using sparse approximation[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC:IEEE Computer Society, 2009:104-111. [2] XU L, ZHENG S Z, JIA J. Unnatural L0 sparse representation for natural image deblurring[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC:IEEE Computer Society, 2013:1107-1114. [3] 徐焕宇,孙权森,李大禹,等.基于投影的稀疏表示与非局部正则化图像复原方法[J].电子学报,2014,42(7):1299-1304.(XU H Y, SUN Q S, LI D Y, et al. Projection-based image restoration via space representation and nonlocal regularization[J]. Acta Electronica Sinica, 2014, 42(7):1299-1304.) [4] REN J, LIU J Y, GUO Z M. Context-aware sparse decomposition for image denoising and super-resolution[J]. IEEE Transactions on Image Processing, 2013, 22(4):1456-1469. [5] HUANG D, KANG L, WANG Y C F, et al. Self-learning based image decomposition with applications to single image denoising[J]. IEEE Transactions on Multimedia, 2014, 16(1):83-93. [6] MADERO-OROZCO H, RUIZ P, MATEOS J, et al. Image deblurring combining Poisson singular integral and total variation prior models[C]//Proceedings of the 21st European Signal Processing Conference. Piscataway, NJ:IEEE, 2013:1-5. [7] ZHANG J, ZHAO D B, XIONG R Q, et al. Image restoration using joint statistical modeling in a space-transform domain[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(6):915-928. [8] SHI J G, QI C. Sparse modeling based image inpainting with local similarity constraint[C]//Proceedings of the 20th IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2013:1371-1375. [9] YEH C, KANG L, CHIOU Y, et al. Self-learning-based post-processing for image/video deblocking via sparse representation[J]. Journal of Visual Communication Image Representation, 2014, 25(5):891-903. [10] CHOI I, KIM S, BROWN M S, et al. A leaning-based approach to reduce JPEG artifacts in image matting[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2013:2880-2887. [11] RAM S, RODRIGUEZ J J. Single image super-resolution using dictionary-based local regression[C]//Proceedings of the 2014 IEEE Southwest Symposium on Image Analysis and Interpretation. Piscataway, NJ:IEEE, 2014:121-124. [12] 钟莹,杨学智,唐益明,等.采用结构自适应块匹配的非局部均值去噪算法[J].电子与信息学报,2013,35(12):2908-2916.(ZHONG Y, YANG X Z, TANG Y M, et al. Non-local means denoising derived from structure-adapted block matching[J]. Journal of Electronics & Information Technology, 2013, 35(12):2908-2916.) [13] ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2011:479-486. [14] WANG R X, TRUCCO E. Single-patch low-rank prior for non-pointwise impulse noise removal[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2013:1073-1080. [15] LEVIN A, FERGUS R, DURAND F, et al. Deconvolution using natural image priors[R]. Cambridge, MA:Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 2007. [16] WEISS Y, FREEMAN W T. What makes a good model of natural images?[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC:IEEE Computer Society, 2007:1-8. [17] ROTH S, BLACK M J. Fields of experts:a framework for learning image priors[C]//Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC:IEEE Computer Society, 2005:860-867. [18] KRISHNAN D, FERGUS R. Fast image deconvolution using hyper-Laplacian priors[C]//NIPS' 09:Proceedings of the 22nd International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2009:1033-1041. [19] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//ICCV 2001:Proceedings of the 8th International Conference on Computer Vision. Piscataway, NJ:IEEE, 2001:416-423. [20] LINDSAY B. Composite likelihood methods[J]. Contemporary Mathematics, 1988, 80(1):221-390. [21] DOMKE J, KARAPURKAR A, ALOIMONOS Y. Who killed the directed model?[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC:IEEE Computer Society, 2008:1-8. [22] ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12):3736-3745. [23] GEMAN D, YANG C. Nonlinear image recovery with half-quadratic regularization[J]. IEEE Transactions on Image Processing, 2002, 4(7):932-946. [24] ZORAN D, WEISS Y. Scale invariance and noise in natural images[C]//Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway, NJ:IEEE, 2009:2209-2216. [25] PORTILLA J, STRELA V, WAINWRIGHT M, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing, 2003, 12(11):1338-1351. [26] CARREIRA-PERPINAN M. Mode-finding for mixtures of Gaussian distributions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 22(11):1318-1323. [27] LUCK L B. An iterative technique for the rectification of observed distributions[J]. Astronomical Journal, 1974, 79(6):745-754. [28] RICHARDSON W. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 1972, 62(1):55-59. [29] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. |