[1] KENNEDY J A,ISRAEL O,FRENKEL A,et al. Super-resolution in PET imaging[J]. IEEE Transactions on Medical Imaging, 2006,25(2):137-147. [2] LI B,CHANG H,SHAN S,et al. Low-resolution face recognition via coupled locality preserving mappings[J]. IEEE Signal Processing Letters,2010,17(1):20-23. [3] DONG C,LOY C C,HE K,et al. Image super-resolution using deep convolutionalnetworks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. [4] DONG C,LOY C C,TANG X. Accelerating the super-resolution convolutional neuralnetwork[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9906. Cham:Springer,2016:391-407. [5] KIM J, LEE J K, LEE K M. Deeply-recursive convolutionalnetwork for image super-resolution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1637-1645. [6] LAI W,HUANG J,AHUJA N,et al. Deep Laplacian pyramidnetworks for fast and accurate super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5835-5843. [7] LIM B,SON S,KIM H,et al. Enhanced deep residualnetworks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2017:1134-1140. [8] TAI Y,YANG J,LIU X. Image super-resolution via deep recursive residualnetwork[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2790-2798. [9] ZHANG Y,LI K,LI K,et al. Image super-resolution using very deep residual channel attentionnetworks[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer,2018:294-310. [10] YANG J,WRIGHT J,HUANG T S,et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing,2010,19(11):2861-2873. [11] CHANG H,YEUNG D Y,XIONG Y. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2004:275-282. [12] FREEDMAN G,FATTAL R. Image and video upscaling from local self-examples[J]. ACM Transactions on Graphics,2011,30(2):Article No. 12. [13] HUANG J,SINGH A,AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:5197-5206. [14] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutionalnetworks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1646-1654. [15] LI J,FANG F,MEI K,et al. Multi-scale residualnetwork for image super-resolution[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11212. Cham:Springer, 2018:527-548. [16] ITTI L,KOCH C,NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259. [17] HU J,SHEN L,SUN G. Squeeze-and-excitationnetworks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [18] WANG X,GIRSHICK R,GUPTA A,et al. Non-local neuralnetworks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [19] FU J,LIU J,TIAN H,et al. Dual attentionnetwork for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:3141-3149. [20] ZHANG Y,LI K,LI K,et al. Residual non-local attentionnetworks for image restoration[EB/OL].[2020-03-01]. https://arxiv.org/pdf/1903.10082.pdf. [21] DAI T,CAI J,ZHANG Y,et al. Second-order attentionnetwork for single image super-resolution[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:11057-11066. [22] TIMOFTE R,AGUSTSSON E,VAN GOOL L,et al. NTIRE 2017 challenge on single image super-resolution:methods and results[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2017:1110-1121. [23] ZHANG Y,TIAN Y,KONG Y,et al. Residual densenetwork for image super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:2472-2481 [24] TAI Y,YANG J,LIU X,et al. MemNet:a persistent memorynetwork for image restoration[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:4549-4557. |