[1] LECUN Y, BOSER B, DENKER J S, et al. Back propagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4):541-551. [2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2012:1097-1105. [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv Preprint, 2014, 2014:arXiv:1409.1556(2014-09-04)[2015-04-10]. http://arxiv.org/abs/1409.1556. [4] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:1-9. [5] HE K, ZHANG X, REN S. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778. [6] 刘雨桐, 李志清, 杨晓玲. 改进卷积神经网络在遥感图像分类中的应用[J]. 计算机应用, 2018, 38(4):949-954.(LIU Y T, LI Z Q, YANG X L. Application of improved convolution neural network in remote sensing image classification[J]. Journal of Computer Applications, 2018, 38(4):949-954.) [7] 安旭骁, 邓洪敏, 史兴宇. 基于迷你卷积神经网络的停车场空车位检测方法[J]. 计算机应用, 2018, 38(4):935-938.(AN X X, DENG H M, SHI X Y. Parking lot space detection method based on mini convolutional neural network[J]. Journal of Computer Applications, 2018, 38(4):935-938.) [8] PEREZ L, WANG J. The Effectiveness of data augmentation in image classification using deep learning[J/OL]. arXiv Preprint, 2017, 2017:arXiv:1712.04621[2017-12-13]. http://arxiv.org/abs/1712.04621. [9] BJERRUM E J. SMILES enumeration as data augmentation for neural network modeling of molecules[J/OL]. arXiv Preprint, 2017, 2017:arXiv:1703.07076(2017-03-21)[2017-05-17]. http://arxiv.org/abs/1703.07076. [10] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014:2672-2680. [11] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J/OL]. arXiv Preprint, 2014, 2014:arXiv:1411.1784[2014-11-06]. http://arxiv.org/abs/1411.1784. [12] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J/OL]. arXiv Preprint, 2013, 2013:arXiv:1312.6114(2013-12-20)[2014-05-01]. http://arxiv.org/abs/1312.6114. [13] ROSCA M, LAKSHMINARAYANAN B, WARDEFARLEY D, et al. Variational approaches for auto-encoding generative adversarial networks[J/OL]. arXiv Preprint, 2017, 2017:arXiv:1706.04987(2017-05-15)[2017-10-21]. http://arxiv.org/abs/1706.04987. [14] LARSEN A B L, LAROCHELLE H, WINTHER O. Autoencoding beyond pixels using a learned similarity metric[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York:JMLR.org, 2016:1558-1566. [15] GURUMURTHY S, SARVADEVABHATLA R K, BABU R V. DeLiGAN:Generative adversarial networks for diverse and limited data[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:4941-4949. [16] 王坤峰, 苟超, 段艳杰,等. 生成式对抗网络GAN的研究进展与展望[J].自动化学报, 2017, 43(3):321-332.(WANG K F, GOU C, DUAN Y J,et al. Generative adversarial networks:the state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3):321-332.) |