[1] 杨欣.图像超分辨率技术原理及应用[M].北京:国防工业出版社,2013:2-9,93.(YANG X. Image Super Resolution Technology Principle and Application[M]. Beijing:National Defense Industry Press, 2013:2-9,93.) [2] 赵伟.基于多幅低分辨率图像的超分辨率图像重建[D].南京:东南大学,2011:12-17. (ZHAO W. Super-resolution image reconstruction based on multiple low resolution images[D]. Nanjing:Southeast University, 2011:12-17.) [3] 王宇,吴炜,严斌宇,等.基于SVR的人脸图像超分辨率复原算法[J].四川大学学报(自然科学版),2013,50(4):728-736.(WANG Y, WU W, YAN B Y, et al. Face hallucination based on SVR[J].Journal of Sichuan University (Natural Science Edition), 2013, 50(4):728-736.) [4] XU J, DENG C, GAO X, et al. Image super-resolution using multi-layer support vector regression[C]//Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2014:5799-5803. [5] AN L, BHANU B. Improved image super-resolution by support vector regression[C]//Proceedings of the 2011 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2011:696-700. [6] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11):2861-2873. [7] YANG M C, WANG Y C F. A self-learning approach to single image super-resolution[J]. IEEE Transactions on Multimedia, 2013, 15(3):498-508. [8] YANG M C, CHU C T, WANG Y C F. Learning sparse image representation with support vector regression for single-image super-resolution[C]//Proceedings of the 201017th IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2010:1973-1976. [9] 范九伦,史香晔,徐健,等.多级字典学习的图像超分辨率算法[J].西安邮电大学学报,2016,21(3):32-37.(FAN J L, SHI X Y, XU J, et al. Image super-resolution algorithm based on multi-level dictionaries learning[J]. Journal of Xi'an University of Posts and Telecommunications, 2016, 21(3):32-37.) [10] 邱大伟,刘彦隆.改进的稀疏表示图像超分辨率复原算法[J].电视技术,2016,40(1):135-140. (QIU D W, LIU Y L. Improved image super-resolution via sparse representation[J]. Video Engineering, 2016, 40(1):135-140.) [11] 李欣,崔子冠,孙林慧,等.基于局部回归模型的图像超分辨率重建[J].计算机应用,2016,36(6):1654-1658. (LI X, CUI Z G, SUN L H, et al. Image super-resolution reconstruction based on local regression model[J]. Journal of Computer Applications, 2016, 36(6):1654-1658.) [12] 王宏,卢芳芳,李建武.结合支持向量回归和图像自相似的单幅图像超分辨率算法[J].中国图象图形学报,2016,21(8):986-992.(WANG H, LU F F, LI J W. Single image super-resolution via support vector regression and image self-similarity[J]. Journal of Image and Graphics, 2016, 21(8):986-992.) [13] WANG Z, LIU D, YANG J, et al. Deep networks for image super-resolution with sparse prior[EB/OL].[2016-12-07]. http://pdfs.semanticscholar.org/27fc/88ebb3e325a062a6ff48a7a76611af1ecd5a.pdf. [14] MALLAT S. A wavelet tour of signal processing:the sparse way[EB/OL].[2016-12-07]. http://www.gbv.de/dms/ilmenau/toc/579284751.PDF. [15] BASAK D, PAL S, PATRANABIS D C. Support vector regression[J]. Neural Information Processing Letters and Reviews, 2007, 11(10):203-224. [16] MAIRAL J, BACH F, PONCE J, et al. Online learning for matrix factorization and sparse coding[J]. Journal of Machine Learning Research, 2010, 11(1):19-60. [17] MAIRAL J, BACH F, PONCE J, et al. Online dictionary learning for sparse coding[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York:ACM, 2009:689-696. [18] EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression (with discussion)[EB/OL].[2017-01-06]. https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf. [19] University of Southern California. The USC-SIPI image database[DB/OL].[2016-08-20]. http://sipi.usc.edu/database/. [20] MOORTHY A K, BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5):513-516. [21] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12):4695-4708. [22] MAIRAL J. SPAMS:a sparse modeling software, v2.5[EB/OL].[2016-10-23]. http://spams-devel.gforge.inria.fr/downloads.html. [23] CHANG C, LIN C J. LIBSVM:a library for support vector machines[EB/OL].[2016-10-18]. http://www.csie.ntu.edu.tw/~cjlin/libsvm. |