Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (3): 972-982.DOI: 10.11772/j.issn.1001-9081.2023030331
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles Next Articles
Shuai REN1,2,3, Yuanfa JI1,2,3(), Xiyan SUN1,2,3,4, Zhaochuan WEI1,2,3, Zian LIN1,3
Received:
2023-03-29
Revised:
2023-04-27
Accepted:
2023-05-11
Online:
2023-05-24
Published:
2024-03-10
Contact:
Yuanfa JI
About author:
REN Shuai, born in 2000, M. S. candidate. His research interests include landslide disaster warning system.Supported by:
任帅1,2,3, 纪元法1,2,3(), 孙希延1,2,3,4, 韦照川1,2,3, 林子安1,3
通讯作者:
纪元法
作者简介:
任帅(2000—),男,陕西渭南人,硕士研究生,主要研究方向:滑坡灾害预警系统基金资助:
CLC Number:
Shuai REN, Yuanfa JI, Xiyan SUN, Zhaochuan WEI, Zian LIN. Prediction of landslide displacement based on improved grey wolf optimizer and support vector regression[J]. Journal of Computer Applications, 2024, 44(3): 972-982.
任帅, 纪元法, 孙希延, 韦照川, 林子安. 基于改进灰狼优化与支持向量回归的滑坡位移预测[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 972-982.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023030331
函数名 | 函数表达式 | 维数 | 搜索范围 | 最优解 |
---|---|---|---|---|
Sphere | 30 | [-100,100] | 0 | |
Schwefel 2.22 | 30 | [-10,10] | 0 | |
Schwefel 1.2 | 30 | [-100,100] | 0 | |
Schwefel 2.21 | 30 | [-100,100] | 0 | |
Quartic | 30 | [-1.28,1.28] | 0 | |
Rastrigin | 30 | [-5.12,5.12] | 0 | |
Ackley | 30 | [-32,32] | 0 | |
Griewank | 30 | [-600,600] | 0 |
Tab. 1 Test functions
函数名 | 函数表达式 | 维数 | 搜索范围 | 最优解 |
---|---|---|---|---|
Sphere | 30 | [-100,100] | 0 | |
Schwefel 2.22 | 30 | [-10,10] | 0 | |
Schwefel 1.2 | 30 | [-100,100] | 0 | |
Schwefel 2.21 | 30 | [-100,100] | 0 | |
Quartic | 30 | [-1.28,1.28] | 0 | |
Rastrigin | 30 | [-5.12,5.12] | 0 | |
Ackley | 30 | [-32,32] | 0 | |
Griewank | 30 | [-600,600] | 0 |
函数 | IGWO-1 | IGWO-2 | EGWO | HGWO | CTGWO | |||||
---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
F1 | 0 | 0 | 3.15E-14 | 4.38E-14 | 3.32E-50 | 5.32E-50 | 1.12E-32 | 2.32E-32 | 0 | 0 |
F2 | 1.46E-180 | 0 | 1.70E-24 | 1.00E-24 | 6.93E-30 | 9.33E-30 | 9.33E-20 | 6.92E-20 | 0 | 0 |
F3 | 0 | 0 | 4.58E-09 | 4.17E-09 | 2.83E-12 | 7.53E-12 | 3.18E-08 | 6.55E-08 | 0 | 0 |
F4 | 2.97E-173 | 0 | 2.50E-10 | 1.08E-10 | 1.68E-13 | 2.37E-13 | 4.17E-08 | 4.56E-08 | 0 | 0 |
F5 | 0.000 326 7 | 1.21E-04 | 0.001 548 | 0.001 706 | 1.71E-04 | 1.91E-04 | 1.49E-03 | 7.53E-04 | 4.88E-05 | 6.88E-05 |
F6 | 0 | 3.066 8 | 3.593 496 | 1.14E-14 | 0 | 0 | 2.27E-01 | 9.20E-01 | 0 | 0 |
F7 | 4.44E-15 | 0 | 1.87E-14 | 1.65E-14 | -4.40E-16 | 0 | 4.27E-14 | 4.37E-15 | 8.88E-16 | 8.882E-16 |
F8 | 0 | 0.052 3 | 0.003 629 | 0 | 4.99E-04 | 2.69E-03 | 1.37E-03 | 5.82E-03 | 0 | 0 |
Tab. 2 Comparison of performance test results of GWO algorithms improved by different strategies
函数 | IGWO-1 | IGWO-2 | EGWO | HGWO | CTGWO | |||||
---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
F1 | 0 | 0 | 3.15E-14 | 4.38E-14 | 3.32E-50 | 5.32E-50 | 1.12E-32 | 2.32E-32 | 0 | 0 |
F2 | 1.46E-180 | 0 | 1.70E-24 | 1.00E-24 | 6.93E-30 | 9.33E-30 | 9.33E-20 | 6.92E-20 | 0 | 0 |
F3 | 0 | 0 | 4.58E-09 | 4.17E-09 | 2.83E-12 | 7.53E-12 | 3.18E-08 | 6.55E-08 | 0 | 0 |
F4 | 2.97E-173 | 0 | 2.50E-10 | 1.08E-10 | 1.68E-13 | 2.37E-13 | 4.17E-08 | 4.56E-08 | 0 | 0 |
F5 | 0.000 326 7 | 1.21E-04 | 0.001 548 | 0.001 706 | 1.71E-04 | 1.91E-04 | 1.49E-03 | 7.53E-04 | 4.88E-05 | 6.88E-05 |
F6 | 0 | 3.066 8 | 3.593 496 | 1.14E-14 | 0 | 0 | 2.27E-01 | 9.20E-01 | 0 | 0 |
F7 | 4.44E-15 | 0 | 1.87E-14 | 1.65E-14 | -4.40E-16 | 0 | 4.27E-14 | 4.37E-15 | 8.88E-16 | 8.882E-16 |
F8 | 0 | 0.052 3 | 0.003 629 | 0 | 4.99E-04 | 2.69E-03 | 1.37E-03 | 5.82E-03 | 0 | 0 |
函数 | PSO | SSA | GWO | CTGWO | ||||
---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
F1 | 2.435 352 | 2.378 911 | 6.940 00E-67 | 9.28E-56 | 1.292 00E-27 | 1.60E-27 | 0 | 0 |
F2 | 4.491 009 | 4.181 337 | 7.669 76E-28 | 3.74E-31 | 8.390 54E-17 | 7.28E-17 | 0 | 0 |
F3 | 212.093 600 | 174.288 900 | 1.005 92E-30 | 4.13E-25 | 2.474 11E-05 | 0.000 665 000 | 0 | 0 |
F4 | 1.906 436 | 2.060 081 | 7.325 47E-27 | 1.33E-30 | 7.154 11E-07 | 9.38E-07 | 0 | 0 |
F5 | 14.435 840 | 14.752 670 | 0.001 295 708 | 0.001 653 | 0.001 732 140 | 0.001 818 027 | 4.88E-05 | 6.88E-05 |
F6 | 163.087 900 | 156.233 300 | 0 | 0 | 2.753 117 129 | 2.500 410 916 | 0 | 0 |
F7 | 2.718 287 | 2.653 917 | 8.881 78E-16 | 8.88E-16 | 1.004 83E-13 | 1.002 46E-13 | 8.88E-16 | 8.88E-16 |
F8 | 0.116 163 | 0.140 406 | 0 | 0 | 0.004 924 486 | 0.004 041 731 | 0 | 0 |
Tab. 3 Comparison of performance test results of four algorithms
函数 | PSO | SSA | GWO | CTGWO | ||||
---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
F1 | 2.435 352 | 2.378 911 | 6.940 00E-67 | 9.28E-56 | 1.292 00E-27 | 1.60E-27 | 0 | 0 |
F2 | 4.491 009 | 4.181 337 | 7.669 76E-28 | 3.74E-31 | 8.390 54E-17 | 7.28E-17 | 0 | 0 |
F3 | 212.093 600 | 174.288 900 | 1.005 92E-30 | 4.13E-25 | 2.474 11E-05 | 0.000 665 000 | 0 | 0 |
F4 | 1.906 436 | 2.060 081 | 7.325 47E-27 | 1.33E-30 | 7.154 11E-07 | 9.38E-07 | 0 | 0 |
F5 | 14.435 840 | 14.752 670 | 0.001 295 708 | 0.001 653 | 0.001 732 140 | 0.001 818 027 | 4.88E-05 | 6.88E-05 |
F6 | 163.087 900 | 156.233 300 | 0 | 0 | 2.753 117 129 | 2.500 410 916 | 0 | 0 |
F7 | 2.718 287 | 2.653 917 | 8.881 78E-16 | 8.88E-16 | 1.004 83E-13 | 1.002 46E-13 | 8.88E-16 | 8.88E-16 |
F8 | 0.116 163 | 0.140 406 | 0 | 0 | 0.004 924 486 | 0.004 041 731 | 0 | 0 |
项目 | 关联度 | 项目 | 关联度 |
---|---|---|---|
0.693 7 | 0.611 3 | ||
0.692 1 | 0.646 8 | ||
0.649 1 | 0.763 3 | ||
0.651 5 | 0.733 8 | ||
0.749 3 | 0.643 3 | ||
0.715 0 | 0.607 1 | ||
0.710 9 | 0.611 9 | ||
0.726 1 | 0.780 4 |
Tab. 4 Correlation between each influence factor and landslide periodic term
项目 | 关联度 | 项目 | 关联度 |
---|---|---|---|
0.693 7 | 0.611 3 | ||
0.692 1 | 0.646 8 | ||
0.649 1 | 0.763 3 | ||
0.651 5 | 0.733 8 | ||
0.749 3 | 0.643 3 | ||
0.715 0 | 0.607 1 | ||
0.710 9 | 0.611 9 | ||
0.726 1 | 0.780 4 |
影响因子 | 关联度 |
---|---|
上月周期项滑坡( | 0.780 4 |
上月周期项滑坡高频 | 0.737 5 |
上月周期项滑坡低频 | 0.745 0 |
Tab. 5 Correlation between L2 decomposition and landslide periodic term
影响因子 | 关联度 |
---|---|
上月周期项滑坡( | 0.780 4 |
上月周期项滑坡高频 | 0.737 5 |
上月周期项滑坡低频 | 0.745 0 |
影响因子 | 关联度 |
---|---|
上月滑坡( | 0.726 1 |
上月滑坡高频 | 0.819 1 |
上月滑坡低频 | 0.767 4 |
Tab. 6 Correlation between L1 decomposition and landslide periodic term
影响因子 | 关联度 |
---|---|
上月滑坡( | 0.726 1 |
上月滑坡高频 | 0.819 1 |
上月滑坡低频 | 0.767 4 |
影响因子 | 关联度 |
---|---|
上月滑坡高频 | 0.819 1 |
上月滑坡高频-高频 | 0.810 9 |
上月滑坡高频-低频 | 0.809 4 |
Tab. 7 Correlation between L1 high frequency after decomposition and landslide periodic term
影响因子 | 关联度 |
---|---|
上月滑坡高频 | 0.819 1 |
上月滑坡高频-高频 | 0.810 9 |
上月滑坡高频-低频 | 0.809 4 |
影响因子 | 关联度 |
---|---|
库水位月间变化 | 0.763 3 |
库水位月间变化-高频 | 0.668 7 |
库水位月间变化-低频 | 0.689 0 |
Tab. 8 Correlation between decomposed inter-month variation of reservoir water level and landslide periodic term
影响因子 | 关联度 |
---|---|
库水位月间变化 | 0.763 3 |
库水位月间变化-高频 | 0.668 7 |
库水位月间变化-低频 | 0.689 0 |
影响因子 | 关联度 |
---|---|
前两月累计降雨 | 0.749 3 |
前两月累计降雨-高频 | 0.762 4 |
前两月累计降雨-低频 | 0.724 1 |
Tab. 9 Correlation between decomposed cumulative rainfall in the first two months and landslide cycle term
影响因子 | 关联度 |
---|---|
前两月累计降雨 | 0.749 3 |
前两月累计降雨-高频 | 0.762 4 |
前两月累计降雨-低频 | 0.724 1 |
影响因子 | 关联度 |
---|---|
前两月累计降雨高频 | 0.762 4 |
前两月累计降雨高频-高频 | 0.756 9 |
前两月累计降雨高频-低频 | 0.736 1 |
Tab. 10 Correlation between high frequency decomposition of accumulated rainfall in first two months and landslide periodic term
影响因子 | 关联度 |
---|---|
前两月累计降雨高频 | 0.762 4 |
前两月累计降雨高频-高频 | 0.756 9 |
前两月累计降雨高频-低频 | 0.736 1 |
模型 | C | ε | γ | RMSE | |
---|---|---|---|---|---|
GA-SVR | 69.14 | 6.05 | 0.13 | 0.884 | 9.89 |
GWO-SVR | 2 368.84 | 0.52 | 0.11 | 0.836 | 11.78 |
CTGWO-SVR | 2 024.57 | 0.10 | 0.96 | 0.979 | 4.80 |
Tab. 11 Optimization and training results of different models
模型 | C | ε | γ | RMSE | |
---|---|---|---|---|---|
GA-SVR | 69.14 | 6.05 | 0.13 | 0.884 | 9.89 |
GWO-SVR | 2 368.84 | 0.52 | 0.11 | 0.836 | 11.78 |
CTGWO-SVR | 2 024.57 | 0.10 | 0.96 | 0.979 | 4.80 |
等级 | 后验证差比值 | 小概率误差 | 精度结果 |
---|---|---|---|
1 | <0.35 | >0.95 | 好 |
2 | <0.50 | >0.80 | 合格 |
3 | <0.65 | >0.70 | 勉强 |
4 | ≥0.65 | ≤0.70 | 不合格 |
Tab. 12 Accuracy grade
等级 | 后验证差比值 | 小概率误差 | 精度结果 |
---|---|---|---|
1 | <0.35 | >0.95 | 好 |
2 | <0.50 | >0.80 | 合格 |
3 | <0.65 | >0.70 | 勉强 |
4 | ≥0.65 | ≤0.70 | 不合格 |
1 | 郝小员,郝小红,熊红梅,等.滑坡时间预报的非平稳时间序列方法研究[J].工程地质学报, 1999, 7(3):279-283. 10.3969/j.issn.1004-9665.1999.03.014 |
HAO X Y, HAO X H, XIONG H M, et al. Research on landslide time forecast by the unstable time series method [J]. Journal of Engineering Geology, 1999, 7(3): 279-283. 10.3969/j.issn.1004-9665.1999.03.014 | |
2 | 刘晓,曾祥虎,刘春宇.边坡非线性位移的神经网络–时间序列分析[J].岩石力学与工程学报,2005, 24(19):3499-3504. |
LIU X, ZENG X H, LIU C Y. Research on artificial neural network-time series analysis of slope nonlinear displacement [J]. Chinese Journal of Rock Mechanics and Engineering,2005, 24(19): 3499-3504. | |
3 | 刘小珊,罗文强,李飞翱,等.基于SVR的滑坡位移研究[J].长江大学学报(自科版), 2013,10(4):76-78,90. |
LIU X S, LUO W Q, LI F A, et al. Research on landslide displacement based on SVR[J]. Journal of Yangtze University (Natural Science Edition),2013, 10(4): 76-78, 90. | |
4 | 董辉,傅鹤林,冷伍明,等.Boosting集成支持向量回归机的滑坡位移预测[J].湖南大学学报(自然科学版),2007, 34(9):6-10. |
DONG H, FU H L, LENG W M, et al. Boosting ensemble of support vector regression for landslide prediction [J]. Journal of Hunan University (Natural Sciences), 2007, 34(9): 6-10. | |
5 | 鄢好,陈骄锐,李绍红,等.基于时间序列和GRU的滑坡位移预测[J].人民长江,2021,52(1):102-107,133. 10.16232/j.cnki.1001-4179.2021.01.017 |
YAN H, CHEN J R, LI S H, et al. Predicting of landslide displacement based on time series and Gated Recurrent Unit [J]. Yangtze River,2021,52(1):102-107, 133. 10.16232/j.cnki.1001-4179.2021.01.017 | |
6 | 邓冬梅,梁烨,王亮清,等. 基于集合经验模态分解与支持向量机回归的位移预测方法:以三峡库区滑坡为例[J].岩土力学, 2017,38(12):3660-3669. |
DENG D M, LIANG Y, WANG L Q, et al. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression — a case of landslides in Three Gorges Reservoir area [J]. Rock and Soil Mechanics, 2017, 38(12): 3660-3669. | |
7 | 李仕波,李德营,张玉恩,等.基于LS-SVM模型的白水河滑坡台阶状位移预测[J].长江科学院院报,2019,36(4):55-59,76. |
LI S B, LI D Y, ZHANG Y E, et al. Displacement prediction of Baishuihe step-like landslide by least square support vector machine[J]. Journal of Yangtze River Scientific Research Institute, 2019,36(4): 55-59, 76. | |
8 | 张俊,殷坤龙,王佳佳,等.基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J].岩石力学与工程学报,2015,34(2):382-391. |
ZHANG J, YIN K L, WANG J J, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 382-391. | |
9 | 张洪银,童严文,谢继香.混沌序列GA-SVM模型在滑坡监测中的应用[J].人民黄河,2014,36(12):114-117,121. 10.3969/j.issn.1000-1379.2014.12.036 |
ZHANG H Y, TONG Y W, XIE J X. Application of GA-SVM model based on chaos theory to monitoring landslide [J]. Yellow River, 2014, 36(12): 114-117,121. 10.3969/j.issn.1000-1379.2014.12.036 | |
10 | 李麟玮,吴益平,苗发盛,等.基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J].岩石力学与工程学报,2018,37(6):1395-1406. |
LI L W, WU Y P, MIAO F S, et al. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1395-1406. | |
11 | 苗发盛,吴益平,谢媛华,等.基于多算法参数优化与SVR模型的白水河滑坡位移预测[J].工程地质学报,2016,24(6):1136-1144. |
MIAO F S, WU Y P, XIE Y H, et al. Displacement prediction of Baishuihe landslide based on multi algorithm optimization and SVR model [J]. Journal of Engineering Geology, 2016, 24(6): 1136-1144. | |
12 | GAMSE S, HENRIQUES M J, OBERGUGGENBERGER M, et al. Analysis of periodicities in long‐term displacement time series in concrete dams [J]. Structural Control and Health Monitoring, 2019, 27(3): e2477. 10.1002/stc.2477 |
13 | PEREIRA FILHO H G, SAMESIMA N, MADALOSO B A, et al. Modified moving average methodology applied to the treadmill stress testing analysis of microvolt T-wave alternans [J]. Scientific Reports, 2022, 12: 22454. 10.1038/s41598-022-26535-x |
14 | GAO Y, CHEN X, TU R, et al. Prediction of landslide displacement based on the combined VMD-stacked LSTM-TAR model [J]. Remote Sensing, 2022, 14(5): 1164. 10.3390/rs14051164 |
15 | GUO W, MENG Q, WANG X, et al. Landslide displacement prediction based on variational mode decomposition and GA-Elman model [J]. Applied Sciences, 2023, 13(1):450. 10.3390/app13010450 |
16 | 徐峰,范春菊,徐勋建,等.基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J].上海交通大学学报,2018,52(10):1388-1395,1416. |
XU F, FAN C J, XU X J, et al. Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model [J]. Journal of Shanghai Jiao Tong University, 2018,52(10):1388-1395,1416. | |
17 | HUANG Z, DONG M, DU X, et al. A nonlinear prediction model of antislide pile top displacement based on MIC-SVR for Jurassic landslides [J]. Advances in Civil Engineering, 2022, 2022: 9101234. 10.1155/2022/9101234 |
18 | HICKMANN T, GRAMANI L M, KAVISKI E, et al. Wavelet-SVR hybrid methodology for the projection of relative displacements in block I11 of the Itaipu hydroelectric plant dam[J]. GEPROS: Gestão da Produção, Operações e Sistemas, 2016, 11(2): 103-120. 10.15675/gepros.v11i2.1419 |
19 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 10.1016/j.advengsoft.2013.12.007 |
20 | 张达敏,徐航,王依柔,等.嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J].控制与决策,2021,36(5):1173-1180. |
ZHANG D M, XU H, WANG Y R, et al. Whale optimization algorithm for embedded Circle mapping and one-dimensional oppositional learning based small hole imaging [J]. Control and Decision, 2021,36(5):1173-1180. | |
21 | 林诗洁,董晨,陈明志,等.新型群智能优化算法综述[J].计算机工程与应用,2018,54(12):1-9. |
LIN S J, DONG C, CHEN M Z, et al. Summary of new swarm intelligent optimization algorithms[J]. Computer Engineering and Applications, 2018, 54(12):1-9. | |
22 | 宋玉生,刘光宇,朱凌,等.改进的灰狼优化算法在SVM参数优化中的应用[J].传感器与微系统,2022,41(9):151-155. |
SONG Y S, LIU G Y, ZHU L, et al. Application of improved GWO algorithm in SVM parameter optimization [J]. Transducer and Microsystem Technologies, 2022,41(9):151-155. | |
23 | 郭振洲,刘然,拱长青,等.基于灰狼算法的改进研究[J].计算机应用研究,2017,34(12):3603-3606,3610. 10.3969/j.issn.1001-3695.2017.12.019 |
GUO Z Z, LIU R, GONG C Q, et al. Study on improvement of gray wolf algorithm[J]. Application Research of Computers, 2017, 34(12): 3603-3606,3610. 10.3969/j.issn.1001-3695.2017.12.019 | |
24 | WANG J, XU X, XU Y, et al. Fouling prediction of heat exchanger surface under alternating magnetic field based on IGWO-SVR [J]. International Journal of Thermal Sciences, 2023, 184:108018. 10.1016/j.ijthermalsci.2022.108018 |
25 | 尚敏,刘昱廷,侯时平,等.三峡库区秭归县盐关滑坡变形特征及成因机制分析[J].三峡大学学报(自然科学版),2019,41(6):43-47. |
SHANG M, LIU Y T, HOU S P, et al. Deformation characteristics and formation analysis of Yanguan landslide in Zigui county, Hubei province, Three Gorges Reservoir area [J]. Journal of China Three Gorges University (Natural Sciences), 2019,41(6):43-47. | |
26 | 张旭,谭卓英,周春梅.库水位变化下滑坡渗流机制与稳定性分析[J].岩石力学与工程学报,2016,35(4):713-723. |
ZHANG X, TAN Z Y, ZHOU C M. Seepage and stability analysis of landslide under the change of reservoir water levels [J]. Chinese Journal of Rock Mechanics and Engineering, 2016,35(4):713-723. | |
27 | ZHU A, XU C, LI Z, et al. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC [J]. Journal of Systems Engineering and Electronics, 2015, 26(2):317-328. 10.1109/jsee.2015.00037 |
28 | 黎素涵,叶春明.重选精英个体的非线性收敛灰狼优化算法[J].计算机工程与应用,2021,57(1):62-68. |
LI S H, YE C M. Improved grey wolf optimizer algorithm using nonlinear convergence factor and elite re-election strategy [J]. Computer Engineering and Applications,2021,57(1):62-68. | |
29 | XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. 10.1080/21642583.2019.1708830 |
30 | KENNEDY J, EBERHART R. Particle swarm optimization [C]//Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995, 4: 1942-1948. 10.1109/ICNN.1995.488968 |
31 | LI S, WU N. A new grey prediction model and its application in landslide displacement prediction [J]. Chaos, Solitons & Fractals, 2021, 147: 110969. 10.1016/j.chaos.2021.110969 |
[1] | Lilin FAN, Fukang CAO, Wanting WANG, Kai YANG, Zhaoyu SONG. Intermittent demand forecasting method based on adaptive matching of demand patterns [J]. Journal of Computer Applications, 2024, 44(9): 2747-2755. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Qinzhuang ZHAO, Hongye TAN. Time series causal inference method based on adaptive threshold learning [J]. Journal of Computer Applications, 2024, 44(9): 2660-2666. |
[4] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. |
[5] | Zixuan YUAN, Xiaoqing WENG, Ningzhen GE. Early classification model of multivariate time series based on orthogonal locality preserving projection and cost optimization [J]. Journal of Computer Applications, 2024, 44(6): 1832-1841. |
[6] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[7] | Hongtao SONG, Jiangsheng YU, Qilong HAN. Industrial multivariate time series data quality assessment method [J]. Journal of Computer Applications, 2024, 44(6): 1743-1750. |
[8] | Fan MENG, Qunli YANG, Jing HUO, Xinkuan WANG. EraseMTS: iterative active multivariable time series anomaly detection algorithm based on margin anomaly candidate set [J]. Journal of Computer Applications, 2024, 44(5): 1458-1463. |
[9] | Yu ZENG, Yang ZHANG, Shang ZENG, Maoli FU, Qixue HE, Linlong ZENG. Time series prediction algorithm based on multi-scale gated dilated convolutional network [J]. Journal of Computer Applications, 2024, 44(11): 3427-3434. |
[10] | Yiyang FAN, Yang ZHANG, Shang ZENG, Yu ZENG, Maoli FU. Multivariate long-term series forecasting model based on decomposition and frequency domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3442-3448. |
[11] | Pei ZHAO, Yan QIAO, Rongyao HU, Xinyu YUAN, Minyue LI, Benchu ZHANG. Multivariate time series anomaly detection based on multi-domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3419-3426. |
[12] | Hui JIANG, Qiuyan YAN, Zhujun JIANG. Symmetric positive definite autoencoder method for multivariate time series anomaly detection [J]. Journal of Computer Applications, 2024, 44(10): 3294-3299. |
[13] | Lishuo YE, Zhixue HE. Multiscale time series anomaly detection incorporating wavelet decomposition [J]. Journal of Computer Applications, 2024, 44(10): 3300-3306. |
[14] | Li XU, Xiangyuan FU, Haoran LI. Spatial-temporal traffic flow prediction model based on gated convolution [J]. Journal of Computer Applications, 2023, 43(9): 2760-2765. |
[15] | Hui LU, Ruizhang HUANG, Jingjing XUE, Lina REN, Chuan LIN. DDDC: deep dynamic document clustering model [J]. Journal of Computer Applications, 2023, 43(8): 2370-2375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||