[1] OLAIYA F, ADEYEMO A B. Application of data mining techniques in weather prediction and climate change studies[J]. International Journal of Information Engineering & Electronic Business, 2012, 4(1):304-310. [2] GUO Z Y, DAI X Y, LIN H. Application of association rule in disaster weather forecasting[J]. Geographic Information Sciences, 2004, 10(1):68-72. [3] CANO R, SORDO C, GUTIÉRREZ J M. Applications of Bayesian networks in meteorology[M]//Advances in Bayesian Networks. Berlin:Springer, 2004:309-328. [4] 杨淑群,芮景析,冯汉中.支持向量机(SVM)方法在降水分类预测中的应用[J].西南农业大学学报(自然科学版),2006,28(2):252-257.(YANG S Q, RUI J X, FENG H Z. Application of Support Vector Machine (SVM) in rainfall categorical forecast[J]. Journal of Southwest Agricultural University (Natural Science), 2006, 28(2):252-257.) [5] PRASAD N, KUMAR P, NAIDU M. An approach to prediction of precipitation using Gini index in SLIQ decision tree[C]//Proceedings of the 20134th International Conference on Intelligent Systems, Modelling and Simulation. Washington, DC:IEEE Computer Society, 2013:56-60. [6] 何伟,孔梦荣,赵海青.基于贝叶斯分类器的气象预测研究[J].计算机工程与设计,2007,28(15):3780-3782.(HE W, KONG M R, ZHAO H Q. Research on meteorological prediction with Bayesian classifier[J]. Computer Engineering and Design, 2007, 28(15):3780-3782.) [7] SÁNCHEZ-MONEDERO J, SALCEDO-SANZ S, GUTIÉRREZ P A, et al. Simultaneous modelling of rainfall occurrence and amount using a hierarchical nominal-ordinal support vector classifier[J]. Engineering Applications of Artificial Intelligence, 2014, 34(3):199-207. [8] 滕少华,樊继慧,陈潇,等.SVM多分类器协同挖掘局域气象数据[J].广西大学学报(自然科学版),2014(5):1131-1137.(TENG S H, FAN J H, CHEN X, et al. Application of SVM-based muti-classifiers in mining cooperatively local area meteorological data[J]. Journal of Guangxi University (Natural Science Edition), 2014(5):1131-1137.) [9] 吴俊利,张步涵,王魁.基于Adaboost的BP神经网络改进算法在短期风速预测中的应用[J].电网技术,2012,36(9):221-225.(WU J L,ZHANG B H,WANG K. Application of Adaboost-based BP neural network for short-term wind speed forecast[J]. Power System Technology, 2012, 36(9):221-225). [10] ZHU J, ROSSET S, ZOU H, et al. Multi-class AdaBoost[EB/OL].[2017-01-03]. https://web.stanford.edu/~hastie/Papers/samme.pdf. [11] 张丹,韩胜菊,李建,等.基于改进粒子群算法的BP算法的研究[J].计算机仿真,2011,28(2):147-150.(ZHANG D, HAN S J, LI J, et al. BP algorithm based on improved particle swarm optimization[J]. Computer Simulation, 2011, 28(2):147-150.) [12] JIANG C. Review of back propagation neural network applied to athletics[C]//Proceedings of the 201224th Chinese Control and Decision Conference. Piscataway, NJ:IEEE, 2012:2371-2375. [13] LI X, WANG L, SUNG E. AdaBoost with SVM-based component classifiers[J]. Engineering Applications of Artificial Intelligence, 2008, 21(5):785-795. [14] 廖红文,周德龙.AdaBoost及其改进算法综述[J].计算机系统应用,2012,21(5):240-244.(LIAO H W, ZHOU D L. Review of AdaBoost and its improvement[J]. Computer System & Applications, 2012, 21(5):240-244.) [15] LI J, WU X H, QIN C H, et al. The design of image compression with BP neural network based on the dynamic adjusting hidden layer nodes[J]. Advanced Materials Research, 2012, 433/434/435/436/437/438/439/440:3797-3801. |