Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (4): 1275-1283.DOI: 10.11772/j.issn.1001-9081.2021071263
Special Issue: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• The 36 CCF National Conference of Computer Applications (CCF NCCA 2020) • Previous Articles Next Articles
Haifeng LI(), Bifan ZHAO, Jinyi HOU, Huaichao WANG, Zhongcheng GUI
Received:
2021-05-15
Revised:
2021-08-26
Accepted:
2021-08-30
Online:
2021-08-26
Published:
2022-04-10
Contact:
Haifeng LI
About author:
ZHAO Bifan, born in 1996, M. S. candidate. Her research interests include image processing, computer vision.Supported by:
通讯作者:
李海丰
作者简介:
赵碧帆(1996—),女,河南辉县人,硕士研究生,主要研究方向:图像处理、计算机视觉基金资助:
CLC Number:
Haifeng LI, Bifan ZHAO, Jinyi HOU, Huaichao WANG, Zhongcheng GUI. Automatic detection algorithm for underground target based on adaptive double threshold[J]. Journal of Computer Applications, 2022, 42(4): 1275-1283.
李海丰, 赵碧帆, 侯谨毅, 王怀超, 桂仲成. 基于自适应双阈值的地下目标自动检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1275-1283.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071263
目标类别 | 训练集 | 测试集 | 图像性质 | ||
---|---|---|---|---|---|
A | B | C | |||
脱空 | 64 | 131 | 251 | 55 | 真实数据 |
钢筋 | 43 | 85 | 203 | 35 | 真实数据 |
平行钢筋 | 45 | 89 | 176 | 11 | 真实数据 |
噪声 | 84 | 150 | 282 | 0 | 随机抽取 |
总目标数量 | 236 | 455 | 912 | 101 | |
图片数量 | 50 | 100 | 200 | 36 |
Tab. 1 Experimental dataset
目标类别 | 训练集 | 测试集 | 图像性质 | ||
---|---|---|---|---|---|
A | B | C | |||
脱空 | 64 | 131 | 251 | 55 | 真实数据 |
钢筋 | 43 | 85 | 203 | 35 | 真实数据 |
平行钢筋 | 45 | 89 | 176 | 11 | 真实数据 |
噪声 | 84 | 150 | 282 | 0 | 随机抽取 |
总目标数量 | 236 | 455 | 912 | 101 | |
图片数量 | 50 | 100 | 200 | 36 |
分类器 | 病害类别 | Recall | Precision | F1-Score |
---|---|---|---|---|
SVM | 脱空 | 0.87 | 0.98 | 0.92 |
钢筋 | 0.49 | 0.85 | 0.62 | |
平行钢筋 | 0.64 | 0.44 | 0.52 | |
平均值 | 0.67 | 0.76 | 0.69 | |
LeNet | 脱空 | 0.45 | 0.60 | 0.52 |
钢筋 | 0.86 | 0.94 | 0.90 | |
平行钢筋 | 0.36 | 0.80 | 0.50 | |
平均值 | 0.56 | 0.78 | 0.64 | |
SVM+LeNet | 脱空 | 0.87 | 0.98 | 0.92 |
钢筋 | 0.94 | 0.90 | 0.92 | |
平行钢筋 | 0.91 | 0.91 | 0.91 | |
平均值 | 0.91 | 0.93 | 0.92 |
Tab. 2 Final test result score of each type of targets
分类器 | 病害类别 | Recall | Precision | F1-Score |
---|---|---|---|---|
SVM | 脱空 | 0.87 | 0.98 | 0.92 |
钢筋 | 0.49 | 0.85 | 0.62 | |
平行钢筋 | 0.64 | 0.44 | 0.52 | |
平均值 | 0.67 | 0.76 | 0.69 | |
LeNet | 脱空 | 0.45 | 0.60 | 0.52 |
钢筋 | 0.86 | 0.94 | 0.90 | |
平行钢筋 | 0.36 | 0.80 | 0.50 | |
平均值 | 0.56 | 0.78 | 0.64 | |
SVM+LeNet | 脱空 | 0.87 | 0.98 | 0.92 |
钢筋 | 0.94 | 0.90 | 0.92 | |
平行钢筋 | 0.91 | 0.91 | 0.91 | |
平均值 | 0.91 | 0.93 | 0.92 |
数据集 | F1-Score | |||
---|---|---|---|---|
脱空 | 钢筋 | 平行钢筋 | 平均值 | |
A | 0.92 | 0.92 | 0.91 | 0.92 |
B | 0.92 | 0.94 | 0.91 | 0.92 |
C | 0.92 | 0.94 | 0.92 | 0.93 |
Tab. 3 F1-Score values of different training set test results
数据集 | F1-Score | |||
---|---|---|---|---|
脱空 | 钢筋 | 平行钢筋 | 平均值 | |
A | 0.92 | 0.92 | 0.91 | 0.92 |
B | 0.92 | 0.94 | 0.91 | 0.92 |
C | 0.92 | 0.94 | 0.92 | 0.93 |
1 | 崔孝飞.城市地下病害体风险评估技术研究[D].郑州:华北水利水电大学,2019:4-7. |
CUI X F. Research on risk assessment technology of urban underground diseases[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019:4-7. | |
2 | TONG Z, GAO J, YUAN D D. Advances of deep learning applications in ground-penetrating radar: a survey[J]. Construction and Building Materials, 2020, 258:120371. 10.1016/j.conbuildmat.2020.120371 |
3 | OZKAYA U, MELGANI F, BEJIGA M B, et al. GPR Bscan image analysis with deep learning methods[J]. Measurement, 2020, 165: 107770. |
4 | 侯斐斐,施荣华,雷文太,等.面向探地雷达B-scan图像的目标检测算法综述[J].电子与信息学报,2020,42(1):191-200. 10.11999/JEIT190680 |
HOU F F, SHI R H, LEI W T, et al. A review of target detection algorithm for GPR B-scan processing[J]. Journal of Electronics & Information Technology, 2020, 42(1):191-200. 10.11999/JEIT190680 | |
5 | 许献磊,赵艳玲,王方,等.GPR探测地埋管径研究综述[J].地球物理学进展,2012,27(5):2206-2215. 10.6038/j.issn.1004-2903.2012.05.048 |
XU X L, ZHAO Y L, WANG F, et al. Review on diameter detection of underground pipe with GPR[J]. Progress in Geophysics, 2012, 27(5):2206-2215. 10.6038/j.issn.1004-2903.2012.05.048 | |
6 | TORRIONE P A, MORTON K D, SAKAGUCHI R, et al. Histograms of oriented gradients for landmine detection in ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3):1539-1550. 10.1109/tgrs.2013.2252016 |
7 | KLĘSK P, KAPRUZIAK M, OLECH B. Statistical moments calculated via integral images in application to landmine detection from ground penetrating radar 3D scans[J]. Pattern Analysis and Applications, 2018, 21:671-684. 10.1007/s10044-016-0592-5 |
8 | 刘普.基于GPR图像的混凝土结构病害的定位与测量研究[D].南京:南京邮电大学,2020:29-41. |
LIU P. Research on location and quantification of concrete structural defects based on GPR Images[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020:29-41. | |
9 | SHAO W B, BOUZERDOUM A, PHUNG S L. Signal classification for ground penetrating radar using sparse kernel feature selection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 7(12):4670-4680. |
10 | MUKHOPADHYAY P, CHAUDHURI B B. A survey of Hough transform[J]. Pattern Recognition, 2015, 48(3):993-1010. 10.1016/j.patcog.2014.08.027 |
11 | ILLAWATHURE C, PARKIN G, LAMBOT S, et al. Evaluating soil moisture estimation from ground‐penetrating radar hyperbola fitting with respect to a systematic time‐domain reflectometry data collection in a boreal podzolic agricultural field[J]. Hydrological Processes, 2020, 34(6):1428-1445. 10.1002/hyp.13646 |
12 | WANG Y H, CUI G Y, XU J. Semi-automatic detection of buried rebar in GPR data using a genetic algorithm[J]. Automation in Construction, 2020, 114:103186. 10.1016/j.autcon.2020.103186 |
13 | 王一帆.基于支持向量机和探地雷达技术的公路浅层病害检测研究[D].郑州:华北水利水电大学,2019:33-38. |
WANG Y F. Detection of highway shallow defect based on Support Vector Machine(SVM) and Ground Penetrating Radar(GPR)[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019:33-38. | |
14 | FANG Z, SHI Z S, WANG X K, et al. Roadbed defect detection from ground penetrating radar B-scan data using Faster RCNN[J]. IOP Conference Series Earth and Environmental Science, 2021, 660(1):012020. 10.1088/1755-1315/660/1/012020 |
15 | NI Z K, ZHAO D, YE S B, et al. City road cavity detection using YOLOv3 for ground-penetrating radar[C]// Proceedings of the 18th International Conference on Ground Penetrating Radar. Golden, Society of Exploration Geophysicists, 2020: 455. 10.1190/gpr2020-100.1 |
16 | HOU F F, LEI W T, LI S, et al. Improved Mask R-CNN with distance guided intersection over union for GPR signature detection and segmentation[J]. Automation in Construction, 2021, 121: 103414. 10.1016/j.autcon.2020.103414 |
17 | AL-NUAIMY W, HUANG Y, NAKHKASH M, et al. Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition[J]. Journal of Applied Geophysics, 2000, 43(2-4):157-165. 10.1016/s0926-9851(99)00055-5 |
18 | DOU Q X, WEI L J, MAGEE D R, et al. Real-time hyperbola recognition and fitting in GPR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):51-62. 10.1109/tgrs.2016.2592679 |
19 | ZHOU X R, CHEN H H, LI J L. An automatic GPR B-Scan image interpreting model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6):3398-3412. 10.1109/tgrs.2018.2799586 |
20 | SHAW M R, MILLARD S G, MOLYNEAUX T C K, et al. Location of steel reinforcement in concrete using ground penetrating radar and neural networks[J]. NDT & E International,2005, 38(3):203-212. 10.1016/j.ndteint.2004.06.011 |
21 | GONZALEZ R C, WOODS R E. Digital Image Processing [M] 4th ed. New York: Pearson, 2017:579-622. |
[1] | Zhangjian JI, Na DU. Tiny target detection based on improved VariFocalNet [J]. Journal of Computer Applications, 2024, 44(7): 2200-2207. |
[2] | Yuanjiong LIU, Maozheng HE, Yibin HUANG, Cheng QIAN. Ship identification model based on ResNet50 and improved attention mechanism [J]. Journal of Computer Applications, 2024, 44(6): 1935-1941. |
[3] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[4] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. |
[5] | Yuliang ZHENG, Yunhua CHEN, Weijie BAI, Pinghua CHEN. Vehicle target detection by fusing event data and image frames [J]. Journal of Computer Applications, 2024, 44(3): 931-937. |
[6] | Cunyi LIAO, Yi ZHENG, Weijin LIU, Huan YU, Shouyin LIU. Decoupling-fusing algorithm for multiple tasks with autonomous driving environment perception [J]. Journal of Computer Applications, 2024, 44(2): 424-431. |
[7] | Yudong PANG, Zhixing LI, Weijie LIU, Tianhao LI, Ningning WANG. Small target detection model in overlooking scenes on tower cranes based on improved real-time detection Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3922-3929. |
[8] | Li ZENG, Jingru YANG, Gang HUANG, Xiang JING, Chaoran LUO. Survey on hypergraph application methods: issues, advances, and challenges [J]. Journal of Computer Applications, 2024, 44(11): 3315-3326. |
[9] | Lin WANG, Jingliang LIU, Wuwei WANG. Small target detection method in UAV images based on fusion of dilated convolution and Transformer [J]. Journal of Computer Applications, 2024, 44(11): 3595-3602. |
[10] | Dahai LI, Bingtao LI, Zhendong WANG. Underwater target detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(11): 3610-3616. |
[11] | Junyu YANG, Yan DONG, Zhennan LONG, Xin YANG, Bin HAN. Rain detection algorithm based on event camera [J]. Journal of Computer Applications, 2023, 43(9): 2904-2909. |
[12] | Kunting LU, Rongrong FEI, Xuande ZHANG. Remote sensing image pansharpening by convolutional neural network [J]. Journal of Computer Applications, 2023, 43(9): 2963-2969. |
[13] | Meijia LIANG, Xinwu LIU, Xiaopeng HU. Small target detection algorithm for train operating environment image based on improved YOLOv3 [J]. Journal of Computer Applications, 2023, 43(8): 2611-2618. |
[14] | Yuanlong ZHAO, Yugang SHAN, Jie YUAN, Kangdi ZHAO. Object tracking based on instance segmentation and Pythagorean fuzzy decision-making [J]. Journal of Computer Applications, 2023, 43(6): 1930-1937. |
[15] | Yue CHI, Zhengping LI, Chao XU, Bo FENG. Highlight removal algorithm for medical endoscopic images [J]. Journal of Computer Applications, 2023, 43(4): 1278-1283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||