[1] 张兵, 杨俊, 宋昆仑, 等.大气污染的危害及其对经济社会的影响研究——以石家庄市为例[J]. 环境科学与管理, 2015, 40(7): 61-64. (ZAHNG B, YANG J, SONG K L, et al. Harm of air pollution and its impact on economy and society-taking Shijiazhuang city as an example[J]. Environmental Science and Management, 2015, 40(7): 61-64.) [2] 马晓燕, 张志红.PM2.5与哮喘关系的研究进展[J]. 环境与职业医学, 2015, 32(3): 279-283. (MA X Y, ZHANG Z H. Research progress on association between PM2.5 and asthma[J]. Journal of Environmental and Occupational Medicine, 2015, 32(3): 279-283.) [3] WANG Y, ZHUANG G, ZHANG X, et al. The ion chemistry, seasonal cycle, and sources of PM2.5, and TSP aerosol in Shanghai[J]. Atmospheric Environment, 2006, 40(16): 2935-2952. [4] 叶文波.宁波市大气可吸入颗粒物PM10和PM2.5的源解析研究[J]. 环境污染与防治, 2011, 33(9): 66-69. (YE W B. Study on source apportionment of PM10 and PM2.5 in ambient air of Ningbo[J]. Environmental Pollution and Control, 2011, 33(9): 66-69.) [5] 贺祥, 林振山. 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J]. 环境科学, 2017,38(1): 22-32. (HE X, LIN Z S. Interactive effects of the influencing factors on the changes of PM2.5 concentration based on gam model[J]. Environmental Science, 2017,38(1): 22-32.) [6] 汤羹, 马宪国.上海气象因素对PM2.5等大气污染物浓度的影响[J]. 能源研究与信息, 2016, 32(2): 71-74. (TANG G, MA X G. Influence of meteorological conditions in Shanghai on the concentration of PM2.5and other air pollutants[J]. Energy Research and Information, 2016, 32(2): 71-74.) [7] 张浩月, 王雪松, 陆克定, 等. 珠江三角洲秋季典型气象条件对O3和PM10污染的影响[J]. 北京大学学报(自然科学版), 2014, 50(3): 565-576. (ZHANG H Y, WANG X S, LU K D, et al. Impact of typical meteorological conditions on the O3and PM10 pollution episodes in the Pearl River Delta in autumn[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 565-576.) [8] 王晓彦, 赵熠琳, 霍晓芹, 等. 基于数值模式的环境空气质量预报影响因素和改进方法[J]. 中国环境监测, 2016, 32(5): 1-7. (WANG X Y, ZHAO Y L, HUO X Q, et al. Discussion on the influence factors and improvement methods of ambient air quality forecasting based on numerical models[J]. Environmental Monitoring in China, 2016, 32(5): 1-7.) [9] 王茜, 吴剑斌, 林燕芬. CMAQ模式及其修正技术在上海市PM2.5预报中的应用检验[J]. 环境科学学报, 2015, 35(6): 1651-1656. (WANG Q, WU J B, LIN Y F. Implementation of a dynamic linear regression method on the CMAQ forecast of PM2.5 in Shanghai[J]. Acta Scientiae Circumstantiae, 2015, 35(6): 1651-1656.) [10] SYRAKOV D, PRODANOVA M, GEORGIEVA E, et al. Simulation of European air quality by WRF-CMAQ models using AQMEⅡ-2 infrastructure[J]. Journal of Computational & Applied Mathematics, 2016, 293 (C): 232-245. [11] ZHANG Y, ZHANG X, WANG L, et al. Application of WRF/Chem over East Asia: part I, model evaluation and intercomparison with MM5/CMAQ[J]. Atmospheric Environment, 2016, 124: 285-300. [12] 黄思, 唐晓, 徐文帅, 等. 利用多模式集合和多元线性回归改进北京PM10预报[J]. 环境科学学报, 2015, 35(1): 56-64. (HUANG S, TANG X, XU W S, et al. Application of ensemble forecast and linear regression method in improving PM10 forecast over Beijing areas[J]. Acta Scientiae Circumstantiae, 2015, 35(1): 56-64.) [13] 王占山, 李晓倩, 王宗爽, 等. 空气质量模型CMAQ的国内外研究现状[J]. 环境科学与技术, 2013, 36(6): 386-391. (WANG Z S, LI X Q, WANG Z S, et al. Application status of Models-3/CMAQ in environmental management[J]. Environmental Science & Technology, 2013, 36(6): 386-391.) [14] 余辉, 袁晶, 于旭耀, 等. 基于ARMAX的PM2.5小时浓度跟踪预测模型[J]. 天津大学学报 (自然科学与工程技术版), 2017, 50(1): 105-111. (YU H, YUAN J, YU X Y, et al. Tracking prediction model for PM2.5 hourly concentration based on ARMAX[J]. Journal of Tianjin University (Science and Technology), 2017, 50(1): 105-111.) [15] 彭斯俊, 沈加超, 朱雪.基于ARIMA模型的PM2.5预测[J]. 安全与环境工程, 2014, 21(6): 125-128. (PENG S J, SHEN J C, ZHU X. Forecast of PM2.5 based on the arima model[J]. Safety and Environmental Engineering, 2014, 21(6): 125-128.) [16] 张玉丽, 何玉, 朱家明.基于多元线性回归模型PM2.5预测问题的研究[J]. 安徽科技学院学报, 2016, 30(3): 92-97. (ZAHNG Y L, HE Y, ZHU J M. Study of the prediction of PM2.5 based on the multivariate linear regression model[J]. Journal of Anhui Science and Technology University, 2016, 30(3): 92-97.) [17] TAI A P K, MICKLEY L J, JACOB D J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change[J]. Atmospheric Environment, 2010, 44(32): 3976-3984. [18] 艾洪福, 潘贺, 李迎斌. 关于空气雾霾PM2.5含量预测优化研究[J]. 计算机仿真, 2017, 34(1): 392-395. (AI H F, PAN H, LI Y B. Research on optimization of PM2.5 content prediction in air haze[J]. Computer Simulation, 2017, 34(1): 392-395.) [19] 戴华炜, 陈小旋, 孙晓通. 基于GM (1, 1) 模型群的深圳市大气污染物灰色预测[J]. 数学的实践与认识, 2014, 44(1): 131-136. (DAI H W, CHEN X X, SUN X T. The gray prediction model of the atmospheric pollutants in Shenzhen based on GM (1, 1) [J]. Mathematics in Practice and Theory, 2014, 44(1): 131-136.) [20] 杨忠, 童楚东, 俞杰, 等. 加权因子的PSO-SVR区域空气PM2.5浓度预报方法[J]. 计算机应用研究, 2017(2): 405-408. (YANG Z, TONG C D, YU J, et al. Regional PM2.5 concentration prediction method of PSO-SVR model with weighting factors[J]. Application Research of Computers, 2017(2): 405-408.) [21] 李龙, 马磊, 贺建峰, 等. 基于特征向量的最小二乘支持向量机PM2.5浓度预测模型[J]. 计算机应用, 2014, 34(8): 2212-2216. (LI L, MA L, HE J F, et al. PM2.5concentration prediction model of least squares support vector machine based on feature vector[J]. Journal of Computer Applications, 2014, 34(8): 2212-2216.) [22] 葛考, 时贝贝, 徐康耀, 等.基于BAPSO-PNN神经网络算法的空气质量评价研究[J]. 环境工程, 2015, 33: 676-681. (GE K, SHI B B, XU K Y, et al. Air quality assement based on BAPSO-PNN neural network algorithm [J]. Environmental Engineering, 2015, 33: 676-681.) [23] 杨云, 付彦丽.基于T-S模型模糊神经网络的PM2.5质量浓度预测[J]. 陕西科技大学学报, 2015, 33(6): 162-166. (YANG Y, FU Y L. The prediction of mass concentration of PM2.5 based on T-S fuzzy neural network[J]. Journal of Shaanxi University of Science and Technology, 2015, 33(6): 162-166.) [24] 马天成, 刘大铭, 李雪洁, 等.基于改进型PSO的模糊神经网络PM2.5浓度预测[J]. 计算机工程与设计, 2014, 35(9): 3258-3262. (MA T C, LIU D M, LI X J, et al. Improved particle swarm optimization based fuzzy neural network for PM2.5 concentration prediction[J]. Computer Engineering and Design, 2014, 35(9): 3258-3262.) [25] 荆涛, 李霖, 于文柱, 等.t分布受控遗传算法优化BP神经网络的PM2.5质量浓度预测[J]. 中国环境监测, 2015, 31(4): 100-105. (JIN T, LI L, YU W Z, et al. Prediction of PM2.5 mass concentration based on BP neural network optimized by t-distribution controlled genetic algorithm[J]. Environmental Monitoring in China, 2015, 31(4): 100-105.) [26] 谢超, 马民涛, 于肖肖.多种神经网络在华北西部区域城市空气质量预测中的应用[J]. 环境工程学报, 2015, 9(12): 6005-6009. (XIE C, MA M T, YU X X. Forecasting model of air pollution index based on multi-artificial neural network in western region of Northern China[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 6005-6009.) [27] 李嵩, 王冀, 张丹闯, 等. 大气PM2.5污染指数预测优化模型仿真分析[J]. 计算机仿真, 2015, 32(12): 400-403. (LI S, WANG J, ZHANG D C, et al. Simulation analysis of prediction optimization model for atmospheric PM2.5 pollution index[J]. Computer Simulation, 2015, 32(12): 400-403.) [28] MISHRA D, GOYAL P, UPADHYAY A. Artificial intelligence based approach to forecast PM2.5, during haze episodes: a case study of Delhi, India[J]. Atmospheric Environment, 2015, 102: 239-248. [29] HAYKIN S. Neural Networks: a Comprehensive Foundation [M]. 2rd ed. Upper Saddle River, NJ: Prentice Hall Press, 1998. [30] BISHOP C M. Neural Networks for Pattern Recognition[M]. Oxford: Oxford University Press, 1995. [31] ZHANG G, PATUWO B E, HU M Y. Forecasting with artificial neural networks: the state of the art[J]. International Journal of Forecasting, 1998, 14(1): 35-62. [32] 楼文高, 王延政.基于BP网络的水质综合评价模型及其应用[J]. 环境工程学报, 2003, 4(8): 23-26. (LOU W G, WANG Y Z. Water quality comprehensive assessment model using BP networks and its applications[J]. Chinese Journal of Environmental Engineering, 2003, 4(8): 23-26.) [33] 楼文高.实现BP神经网络从理论到实践的跨越[J]. 哈尔滨工程大学学报, 2006, 27: 59-63. (LOU W G. Realization of BP neural network from theory to practice[J]. Journal of Harbin Engineering University, 2006, 27: 59-63.) [34] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61. [35] MIRJALILI S. How effective is the grey wolf optimizer in training multi-layer perceptrons[J]. Applied Intelligence, 2015, 43(1): 150-161. [36] 葛跃, 王明新, 孙向武, 等. 基于增强回归树的城市PM2.5日均值变化分析: 以常州为例[J]. 环境科学, 2017, 38(2): 485-494. (GE Y, WANG M X, SUN X W, et al. Variation analysis of daily PM2.5 concentrations based on boosted regression tree: a case study in Changzhou[J]. Environmental Science, 2017, 38(2): 485-494.) [37] HECHT-NIELSEN R. Theory of the backpropagation neural network [M]// WECHSLER H. Neural Networks for Perception. New York: Academic Press, 1991: 65-93. [38] 楼文高, 乔龙. 基于神经网络的金融风险预警模型及其实证研究[J]. 金融论坛, 2011(11): 52-61. (LOU W G, QIAO L. Early warning model of financial risks and empirical study based on neural network[J]. Finance Forum, 2011(11): 52-61.) [39] DOMBI G W, NANDI P, SAXE J M, et al. Prediction of rib fracture injury outcome by an artificial neural network [J]. Journal of Trauma, 1995, 39(5): 915-921. |