[1] MORRIS G M,HUEY R,LINDSTROM W,et al. AutoDock4 and AutoDockTools4:automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry,2009,30(16):2785-2791. [2] KEISER M J,ROTH B L,ARMBRUSTER B N,et al. Relating protein pharmacology by ligand chemistry[J]. Nature Biotechnology,2007,25(2):197-206. [3] YAMANISHI Y,KOTERA M,KANEHISA M,et al. Drug-target interaction prediction from chemical,genomic and pharmacological data in an integrated framework[J]. Bioinformatics,2010,26(12):246-254. [4] YOSHIHIRO Y,ARAKI M,GUTTERIDGE A,et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces[J]. Bioinformatics,2008,24(13):i232-i240. [5] HE Z,ZHANG J,SHI X,et al. Predicting drug-target interaction networks based on functional groups and biological features[J]. PLoS ONE,2010,5(3):No. e9603. [6] XIA Z,WU L,ZHOU X,et al. Semi-supervised drug-protein interaction prediction from heterogeneous spaces[J]. BMC Systems Biology,2010,4(S2):No. S6. [7] 周文霞, 王同兴, 程肖蕊, 等. 网络药理学研究中的网络构建技术[J]. 国际药学研究杂志,2016,43(5):797-812.(ZHOU W X,WANG T X,CHENG X R,et al. Techniques for molecular network construction in network pharmacology study[J]. Journal of International Pharmaceutical Research,2016,43(5):797-812.) [8] MEI J P,KWOH C K,YANG P,et al. Drug-target interaction prediction by learning from local information and neighbors[J]. Bioinformatics,2013,29(2):238-245. [9] BLEAKLEY K,YAMANISHI Y. Supervised prediction of drugtarget interactions using bipartite local models[J]. Bioinformatics, 2009,25(18):2397-2403. [10] CHENG F,LIU C,JIANG J,et al. Prediction of drug-target interactions and drug repositioning via network-based inference[J]. PLoS Computational Biology,2012,8(5):No. e1002503. [11] CHEN X,LIU M,YAN G. Drug-target interaction prediction by random walk on the heterogeneous network[J]. Molecular BioSystems,2012,8(7):1970-1978. [12] CHEN H,ZHANG Z. A semi-supervised method for drug-target interaction prediction with consistency in networks[J]. PLoS ONE,2013,8(5):No. e62975. [13] LUO Y, ZHAO X, ZHOU J, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information[J]. Nature Communications,2017,8(1):No. 573. [14] HAN P,YANG P,ZHAO P,et al. GCN-MF:disease-gene association identification by graph convolutional networks and matrix factorization[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2019:705-713. [15] TRAN D V,NAVARIN N,SPERDUTI A. On filter size in graph convolutional networks[C]//Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence. Piscataway:IEEE,2018:1534-1541. [16] YAN S,XIONG Y,LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2018:7444-7452. [17] KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2019-09-15]. https://arxiv.org/pdf/1609.02907.pdf. [18] LEVIE R,MONTI F,BRESSON X,et al. CayleyNets:graph convolutional neural networks with complex rational spectral filters[J]. IEEE Transactions on Signal Processing,2019,67(1):97-109. [19] LI R,WANG S,ZHU F,et al. Adaptive graph convolutional neural networks[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:3546-3553. [20] BRUNA J,ZAREMBA W,SZLAM A,et al. Spectral networks and locally connected networks on graphs[EB/OL].[2019-12-03]. https://arxiv.org/pdf/1312.6203.pdf. [21] HUANG Y,HU P,CHAN K C C,et al. Graph convolution for predicting associations between miRNA and drug resistance[J]. Bioinformatics,2020,36(3):851-858. [22] GLOROT X,BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the13th International Conference on Artificial Intelligence and Statistics. New York:JMLR. org,2010:249-256. [23] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs:extending highdimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine,2013,30(3):83-98. [24] WANG W,YANG S,ZHANG X,et al. Drug repositioning by integrating target information through a heterogeneous network model[J]. Bioinformatics,2014,30(20):2923-2930. [25] ZHENG X, DING H, MAMITSUKA H, et al. Collaborative matrix factorization with multiple similarities for predicting drugtarget interactions[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2013:1025-1033. |